summaryrefslogtreecommitdiffstats
path: root/libglusterfs/src/mem-pool.c
blob: b4bd350b7386f9887a3ae6b6b9cb3f9e28b98729 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
  Copyright (c) 2008-2012 Red Hat, Inc. <http://www.redhat.com>
  This file is part of GlusterFS.

  This file is licensed to you under your choice of the GNU Lesser
  General Public License, version 3 or any later version (LGPLv3 or
  later), or the GNU General Public License, version 2 (GPLv2), in all
  cases as published by the Free Software Foundation.
*/

#include "glusterfs/mem-pool.h"
#include "glusterfs/common-utils.h"  // for GF_ASSERT, gf_thread_cr...
#include "glusterfs/globals.h"       // for xlator_t, THIS
#include <stdlib.h>
#include <stdarg.h>

#include "unittest/unittest.h"
#include "glusterfs/libglusterfs-messages.h"

void
gf_mem_acct_enable_set(void *data)
{
    glusterfs_ctx_t *ctx = NULL;

    REQUIRE(data != NULL);

    ctx = data;

    GF_ASSERT(ctx != NULL);

    ctx->mem_acct_enable = 1;

    ENSURE(1 == ctx->mem_acct_enable);

    return;
}

static void *
gf_mem_header_prepare(struct mem_header *header, size_t size)
{
    void *ptr;

    header->size = size;

    ptr = header + 1;

    /* data follows in this gap of 'size' bytes */
    *(uint32_t *)(ptr + size) = GF_MEM_TRAILER_MAGIC;

    return ptr;
}

static void *
gf_mem_set_acct_info(struct mem_acct *mem_acct, struct mem_header *header,
                     size_t size, uint32_t type, const char *typestr)
{
    struct mem_acct_rec *rec = NULL;
    bool new_ref = false;

    if (mem_acct != NULL) {
        GF_ASSERT(type <= mem_acct->num_types);

        rec = &mem_acct->rec[type];
        LOCK(&rec->lock);
        {
            if (!rec->typestr) {
                rec->typestr = typestr;
            }
            rec->size += size;
            new_ref = (rec->num_allocs == 0);
            rec->num_allocs++;
            rec->total_allocs++;
            rec->max_size = max(rec->max_size, rec->size);
            rec->max_num_allocs = max(rec->max_num_allocs, rec->num_allocs);

#ifdef DEBUG
            list_add(&header->acct_list, &rec->obj_list);
#endif
        }
        UNLOCK(&rec->lock);

        /* We only take a reference for each memory type used, not for each
         * allocation. This minimizes the use of atomic operations. */
        if (new_ref) {
            GF_ATOMIC_INC(mem_acct->refcnt);
        }
    }

    header->type = type;
    header->mem_acct = mem_acct;
    header->magic = GF_MEM_HEADER_MAGIC;

    return gf_mem_header_prepare(header, size);
}

static void *
gf_mem_update_acct_info(struct mem_acct *mem_acct, struct mem_header *header,
                        size_t size)
{
    struct mem_acct_rec *rec = NULL;

    if (mem_acct != NULL) {
        rec = &mem_acct->rec[header->type];
        LOCK(&rec->lock);
        {
            rec->size += size - header->size;
            rec->total_allocs++;
            rec->max_size = max(rec->max_size, rec->size);

#ifdef DEBUG
            /* The old 'header' already was present in 'obj_list', but
             * realloc() could have changed its address. We need to remove
             * the old item from the list and add the new one. This can be
             * done this way because list_move() doesn't use the pointers
             * to the old location (which are not valid anymore) already
             * present in the list, it simply overwrites them. */
            list_move(&header->acct_list, &rec->obj_list);
#endif
        }
        UNLOCK(&rec->lock);
    }

    return gf_mem_header_prepare(header, size);
}

void *
__gf_calloc(size_t nmemb, size_t size, uint32_t type, const char *typestr)
{
    size_t tot_size = 0;
    size_t req_size = 0;
    void *ptr = NULL;
    xlator_t *xl = NULL;

    if (!THIS->ctx->mem_acct_enable)
        return CALLOC(nmemb, size);

    xl = THIS;

    req_size = nmemb * size;
    tot_size = req_size + GF_MEM_HEADER_SIZE + GF_MEM_TRAILER_SIZE;

    ptr = calloc(1, tot_size);

    if (!ptr) {
        gf_msg_nomem("", GF_LOG_ALERT, tot_size);
        return NULL;
    }

    return gf_mem_set_acct_info(xl->mem_acct, ptr, req_size, type, typestr);
}

void *
__gf_malloc(size_t size, uint32_t type, const char *typestr)
{
    size_t tot_size = 0;
    void *ptr = NULL;
    xlator_t *xl = NULL;

    if (!THIS->ctx->mem_acct_enable)
        return MALLOC(size);

    xl = THIS;

    tot_size = size + GF_MEM_HEADER_SIZE + GF_MEM_TRAILER_SIZE;

    ptr = malloc(tot_size);
    if (!ptr) {
        gf_msg_nomem("", GF_LOG_ALERT, tot_size);
        return NULL;
    }

    return gf_mem_set_acct_info(xl->mem_acct, ptr, size, type, typestr);
}

void *
__gf_realloc(void *ptr, size_t size)
{
    size_t tot_size = 0;
    struct mem_header *header = NULL;

    if (!THIS->ctx->mem_acct_enable)
        return REALLOC(ptr, size);

    REQUIRE(NULL != ptr);

    header = (struct mem_header *)(ptr - GF_MEM_HEADER_SIZE);
    GF_ASSERT(header->magic == GF_MEM_HEADER_MAGIC);

    tot_size = size + GF_MEM_HEADER_SIZE + GF_MEM_TRAILER_SIZE;
    header = realloc(header, tot_size);
    if (!header) {
        gf_msg_nomem("", GF_LOG_ALERT, tot_size);
        return NULL;
    }

    return gf_mem_update_acct_info(header->mem_acct, header, size);
}

int
gf_vasprintf(char **string_ptr, const char *format, va_list arg)
{
    va_list arg_save;
    char *str = NULL;
    int size = 0;
    int rv = 0;

    if (!string_ptr || !format)
        return -1;

    va_copy(arg_save, arg);

    size = vsnprintf(NULL, 0, format, arg);
    size++;
    str = GF_MALLOC(size, gf_common_mt_asprintf);
    if (str == NULL) {
        /* log is done in GF_MALLOC itself */
        va_end(arg_save);
        return -1;
    }
    rv = vsnprintf(str, size, format, arg_save);

    *string_ptr = str;
    va_end(arg_save);
    return (rv);
}

int
gf_asprintf(char **string_ptr, const char *format, ...)
{
    va_list arg;
    int rv = 0;

    va_start(arg, format);
    rv = gf_vasprintf(string_ptr, format, arg);
    va_end(arg);

    return rv;
}

#ifdef DEBUG
void
__gf_mem_invalidate(void *ptr)
{
    struct mem_header *header = ptr;
    void *end = NULL;

    struct mem_invalid inval = {
        .magic = GF_MEM_INVALID_MAGIC,
        .mem_acct = header->mem_acct,
        .type = header->type,
        .size = header->size,
        .baseaddr = ptr + GF_MEM_HEADER_SIZE,
    };

    /* calculate the last byte of the allocated area */
    end = ptr + GF_MEM_HEADER_SIZE + inval.size + GF_MEM_TRAILER_SIZE;

    /* overwrite the old mem_header */
    memcpy(ptr, &inval, sizeof(inval));
    ptr += sizeof(inval);

    /* zero out remaining (old) mem_header bytes) */
    memset(ptr, 0x00, sizeof(*header) - sizeof(inval));
    ptr += sizeof(*header) - sizeof(inval);

    /* zero out the first byte of data */
    *(uint32_t *)(ptr) = 0x00;
    ptr += 1;

    /* repeated writes of invalid structurein data area */
    while ((ptr + (sizeof(inval))) < (end - 1)) {
        memcpy(ptr, &inval, sizeof(inval));
        ptr += sizeof(inval);
    }

    /* fill out remaining data area with 0xff */
    memset(ptr, 0xff, end - ptr);
}
#endif /* DEBUG */

/* Coverity taint NOTE: pointers passed to free, would operate on
pointer-GF_MEM_HEADER_SIZE content and if the pointer was used for any IO
related purpose, the pointer stands tainted, and hence coverity would consider
access to the said region as tainted. The following directive to coverity hence
sanitizes the pointer, thus removing any taint to the same within this function.
If the pointer is accessed outside the scope of this function without any
checks on content read from an IO operation, taints will still be reported, and
needs appropriate addressing. */

/* coverity[ +tainted_data_sanitize : arg-0 ] */
static void
gf_free_sanitize(void *s)
{
}

void
__gf_free(void *free_ptr)
{
    void *ptr = NULL;
    struct mem_acct *mem_acct;
    struct mem_header *header = NULL;
    bool last_ref = false;

    if (!THIS->ctx->mem_acct_enable) {
        FREE(free_ptr);
        return;
    }

    if (!free_ptr)
        return;

    gf_free_sanitize(free_ptr);
    ptr = free_ptr - GF_MEM_HEADER_SIZE;
    header = (struct mem_header *)ptr;

    // Possible corruption, assert here
    GF_ASSERT(GF_MEM_HEADER_MAGIC == header->magic);

    mem_acct = header->mem_acct;
    if (!mem_acct) {
        goto free;
    }

    // This points to a memory overrun
    GF_ASSERT(GF_MEM_TRAILER_MAGIC ==
              *(uint32_t *)((char *)free_ptr + header->size));

    LOCK(&mem_acct->rec[header->type].lock);
    {
        mem_acct->rec[header->type].size -= header->size;
        mem_acct->rec[header->type].num_allocs--;
        /* If all the instances are freed up then ensure typestr is set
         * to NULL */
        if (!mem_acct->rec[header->type].num_allocs) {
            last_ref = true;
            mem_acct->rec[header->type].typestr = NULL;
        }
#ifdef DEBUG
        list_del(&header->acct_list);
#endif
    }
    UNLOCK(&mem_acct->rec[header->type].lock);

    if (last_ref) {
        xlator_mem_acct_unref(mem_acct);
    }

free:
#ifdef DEBUG
    __gf_mem_invalidate(ptr);
#endif

    FREE(ptr);
}

static pthread_mutex_t pool_lock = PTHREAD_MUTEX_INITIALIZER;
static struct list_head pool_threads;
static pthread_mutex_t pool_free_lock = PTHREAD_MUTEX_INITIALIZER;
static struct list_head pool_free_threads;
static struct mem_pool_shared pools[NPOOLS];
static size_t pool_list_size;

static __thread per_thread_pool_list_t *thread_pool_list = NULL;

#if !defined(GF_DISABLE_MEMPOOL)
#define N_COLD_LISTS 1024
#define POOL_SWEEP_SECS 30

typedef struct {
    struct list_head death_row;
    pooled_obj_hdr_t *cold_lists[N_COLD_LISTS];
    unsigned int n_cold_lists;
} sweep_state_t;

enum init_state {
    GF_MEMPOOL_INIT_NONE = 0,
    GF_MEMPOOL_INIT_EARLY,
    GF_MEMPOOL_INIT_LATE,
    GF_MEMPOOL_INIT_DESTROY
};

static enum init_state init_done = GF_MEMPOOL_INIT_NONE;
static pthread_mutex_t init_mutex = PTHREAD_MUTEX_INITIALIZER;
static unsigned int init_count = 0;
static pthread_t sweeper_tid;

gf_boolean_t
collect_garbage(sweep_state_t *state, per_thread_pool_list_t *pool_list)
{
    unsigned int i;
    per_thread_pool_t *pt_pool;
    gf_boolean_t poisoned;

    (void)pthread_spin_lock(&pool_list->lock);

    poisoned = pool_list->poison != 0;
    if (!poisoned) {
        for (i = 0; i < NPOOLS; ++i) {
            pt_pool = &pool_list->pools[i];
            if (pt_pool->cold_list) {
                if (state->n_cold_lists >= N_COLD_LISTS) {
                    break;
                }
                state->cold_lists[state->n_cold_lists++] = pt_pool->cold_list;
            }
            pt_pool->cold_list = pt_pool->hot_list;
            pt_pool->hot_list = NULL;
        }
    }

    (void)pthread_spin_unlock(&pool_list->lock);

    return poisoned;
}

void
free_obj_list(pooled_obj_hdr_t *victim)
{
    pooled_obj_hdr_t *next;

    while (victim) {
        next = victim->next;
        free(victim);
        victim = next;
    }
}

void *
pool_sweeper(void *arg)
{
    sweep_state_t state;
    per_thread_pool_list_t *pool_list;
    per_thread_pool_list_t *next_pl;
    per_thread_pool_t *pt_pool;
    unsigned int i;
    gf_boolean_t poisoned;

    /*
     * This is all a bit inelegant, but the point is to avoid doing
     * expensive things (like freeing thousands of objects) while holding a
     * global lock.  Thus, we split each iteration into three passes, with
     * only the first and fastest holding the lock.
     */

    for (;;) {
        sleep(POOL_SWEEP_SECS);
        (void)pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
        INIT_LIST_HEAD(&state.death_row);
        state.n_cold_lists = 0;

        /* First pass: collect stuff that needs our attention. */
        (void)pthread_mutex_lock(&pool_lock);
        list_for_each_entry_safe(pool_list, next_pl, &pool_threads, thr_list)
        {
            (void)pthread_mutex_unlock(&pool_lock);
            poisoned = collect_garbage(&state, pool_list);
            (void)pthread_mutex_lock(&pool_lock);

            if (poisoned) {
                list_move(&pool_list->thr_list, &state.death_row);
            }
        }
        (void)pthread_mutex_unlock(&pool_lock);

        /* Second pass: free dead pools. */
        (void)pthread_mutex_lock(&pool_free_lock);
        list_for_each_entry_safe(pool_list, next_pl, &state.death_row, thr_list)
        {
            for (i = 0; i < NPOOLS; ++i) {
                pt_pool = &pool_list->pools[i];
                free_obj_list(pt_pool->cold_list);
                free_obj_list(pt_pool->hot_list);
                pt_pool->hot_list = pt_pool->cold_list = NULL;
            }
            list_del(&pool_list->thr_list);
            list_add(&pool_list->thr_list, &pool_free_threads);
        }
        (void)pthread_mutex_unlock(&pool_free_lock);

        /* Third pass: free cold objects from live pools. */
        for (i = 0; i < state.n_cold_lists; ++i) {
            free_obj_list(state.cold_lists[i]);
        }
        (void)pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
    }
}

void
mem_pool_thread_destructor(void)
{
    per_thread_pool_list_t *pool_list = thread_pool_list;

    /* The pool-sweeper thread will take it from here.
     *
     * We can change 'poison' here without taking locks because the change
     * itself doesn't interact with other parts of the code and a simple write
     * is already atomic from the point of view of the processor.
     *
     * This change can modify what mem_put() does, but both possibilities are
     * fine until the sweeper thread kicks in. The real synchronization must be
     * between mem_put() and the sweeper thread. */
    if (pool_list != NULL) {
        pool_list->poison = 1;
        thread_pool_list = NULL;
    }
}

static __attribute__((constructor)) void
mem_pools_preinit(void)
{
    unsigned int i;

    INIT_LIST_HEAD(&pool_threads);
    INIT_LIST_HEAD(&pool_free_threads);

    for (i = 0; i < NPOOLS; ++i) {
        pools[i].power_of_two = POOL_SMALLEST + i;

        GF_ATOMIC_INIT(pools[i].allocs_hot, 0);
        GF_ATOMIC_INIT(pools[i].allocs_cold, 0);
        GF_ATOMIC_INIT(pools[i].allocs_stdc, 0);
        GF_ATOMIC_INIT(pools[i].frees_to_list, 0);
    }

    pool_list_size = sizeof(per_thread_pool_list_t) +
                     sizeof(per_thread_pool_t) * (NPOOLS - 1);

    init_done = GF_MEMPOOL_INIT_EARLY;
}

/* Call mem_pools_init() once threading has been configured completely. This
 * prevent the pool_sweeper thread from getting killed once the main() thread
 * exits during deamonizing. */
void
mem_pools_init(void)
{
    pthread_mutex_lock(&init_mutex);
    if ((init_count++) == 0) {
        (void)gf_thread_create(&sweeper_tid, NULL, pool_sweeper, NULL,
                               "memsweep");

        init_done = GF_MEMPOOL_INIT_LATE;
    }
    pthread_mutex_unlock(&init_mutex);
}

void
mem_pools_fini(void)
{
    pthread_mutex_lock(&init_mutex);
    switch (init_count) {
        case 0:
            /*
             * If init_count is already zero (as e.g. if somebody called this
             * before mem_pools_init) then the sweeper was probably never even
             * started so we don't need to stop it. Even if there's some crazy
             * circumstance where there is a sweeper but init_count is still
             * zero, that just means we'll leave it running. Not perfect, but
             * far better than any known alternative.
             */
            break;
        case 1: {
            per_thread_pool_list_t *pool_list;
            per_thread_pool_list_t *next_pl;
            unsigned int i;

            /* if mem_pools_init() was not called, sweeper_tid will be invalid
             * and the functions will error out. That is not critical. In all
             * other cases, the sweeper_tid will be valid and the thread gets
             * stopped. */
            (void)pthread_cancel(sweeper_tid);
            (void)pthread_join(sweeper_tid, NULL);

            /* At this point all threads should have already terminated, so
             * it should be safe to destroy all pending per_thread_pool_list_t
             * structures that are stored for each thread. */
            mem_pool_thread_destructor();

            /* free all objects from all pools */
            list_for_each_entry_safe(pool_list, next_pl, &pool_threads,
                                     thr_list)
            {
                for (i = 0; i < NPOOLS; ++i) {
                    free_obj_list(pool_list->pools[i].hot_list);
                    free_obj_list(pool_list->pools[i].cold_list);
                    pool_list->pools[i].hot_list = NULL;
                    pool_list->pools[i].cold_list = NULL;
                }

                list_del(&pool_list->thr_list);
                FREE(pool_list);
            }

            list_for_each_entry_safe(pool_list, next_pl, &pool_free_threads,
                                     thr_list)
            {
                list_del(&pool_list->thr_list);
                FREE(pool_list);
            }

            init_done = GF_MEMPOOL_INIT_DESTROY;
            /* Fall through. */
        }
        default:
            --init_count;
    }
    pthread_mutex_unlock(&init_mutex);
}

#else
void
mem_pools_init(void)
{
}
void
mem_pools_fini(void)
{
}
void
mem_pool_thread_destructor(void)
{
}

#endif

struct mem_pool *
mem_pool_new_fn(glusterfs_ctx_t *ctx, unsigned long sizeof_type,
                unsigned long count, char *name)
{
    unsigned int power;
    struct mem_pool *new = NULL;
    struct mem_pool_shared *pool = NULL;

    if (!sizeof_type) {
        gf_msg_callingfn("mem-pool", GF_LOG_ERROR, EINVAL, LG_MSG_INVALID_ARG,
                         "invalid argument");
        return NULL;
    }

    /* We ensure sizeof_type > 1 and the next power of two will be, at least,
     * 2^POOL_SMALLEST */
    sizeof_type |= (1 << POOL_SMALLEST) - 1;
    power = sizeof(sizeof_type) * 8 - __builtin_clzl(sizeof_type - 1) + 1;
    if (power > POOL_LARGEST) {
        gf_msg_callingfn("mem-pool", GF_LOG_ERROR, EINVAL, LG_MSG_INVALID_ARG,
                         "invalid argument");
        return NULL;
    }
    pool = &pools[power - POOL_SMALLEST];

    new = GF_MALLOC(sizeof(struct mem_pool), gf_common_mt_mem_pool);
    if (!new)
        return NULL;

    new->ctx = ctx;
    new->sizeof_type = sizeof_type;
    new->count = count;
    new->name = name;
    new->pool = pool;
    GF_ATOMIC_INIT(new->active, 0);
#ifdef DEBUG
    GF_ATOMIC_INIT(new->hit, 0);
    GF_ATOMIC_INIT(new->miss, 0);
#endif
    INIT_LIST_HEAD(&new->owner);

    LOCK(&ctx->lock);
    {
        list_add(&new->owner, &ctx->mempool_list);
    }
    UNLOCK(&ctx->lock);

    return new;
}

void *
mem_get0(struct mem_pool *mem_pool)
{
    void *ptr = mem_get(mem_pool);
    if (ptr) {
#if defined(GF_DISABLE_MEMPOOL)
        memset(ptr, 0, mem_pool->sizeof_type);
#else
        memset(ptr, 0, AVAILABLE_SIZE(mem_pool->pool->power_of_two));
#endif
    }

    return ptr;
}

per_thread_pool_list_t *
mem_get_pool_list(void)
{
    per_thread_pool_list_t *pool_list;
    unsigned int i;

    pool_list = thread_pool_list;
    if (pool_list) {
        return pool_list;
    }

    (void)pthread_mutex_lock(&pool_free_lock);
    if (!list_empty(&pool_free_threads)) {
        pool_list = list_entry(pool_free_threads.next, per_thread_pool_list_t,
                               thr_list);
        list_del(&pool_list->thr_list);
    }
    (void)pthread_mutex_unlock(&pool_free_lock);

    if (!pool_list) {
        pool_list = MALLOC(pool_list_size);
        if (!pool_list) {
            return NULL;
        }

        INIT_LIST_HEAD(&pool_list->thr_list);
        (void)pthread_spin_init(&pool_list->lock, PTHREAD_PROCESS_PRIVATE);
        for (i = 0; i < NPOOLS; ++i) {
            pool_list->pools[i].parent = &pools[i];
            pool_list->pools[i].hot_list = NULL;
            pool_list->pools[i].cold_list = NULL;
        }
    }

    (void)pthread_mutex_lock(&pool_lock);
    pool_list->poison = 0;
    list_add(&pool_list->thr_list, &pool_threads);
    (void)pthread_mutex_unlock(&pool_lock);

    thread_pool_list = pool_list;

    return pool_list;
}

pooled_obj_hdr_t *
mem_get_from_pool(struct mem_pool *mem_pool, struct mem_pool_shared *pool)
{
    per_thread_pool_list_t *pool_list;
    per_thread_pool_t *pt_pool;
    pooled_obj_hdr_t *retval;
#ifdef DEBUG
    gf_boolean_t hit = _gf_true;
#endif

    pool_list = mem_get_pool_list();
    if (!pool_list || pool_list->poison) {
        return NULL;
    }

    if (mem_pool) {
        pt_pool = &pool_list
                       ->pools[mem_pool->pool->power_of_two - POOL_SMALLEST];
    } else {
        pt_pool = &pool_list->pools[pool->power_of_two - POOL_SMALLEST];
    }

    (void)pthread_spin_lock(&pool_list->lock);

    retval = pt_pool->hot_list;
    if (retval) {
        pt_pool->hot_list = retval->next;
        (void)pthread_spin_unlock(&pool_list->lock);
        GF_ATOMIC_INC(pt_pool->parent->allocs_hot);
    } else {
        retval = pt_pool->cold_list;
        if (retval) {
            pt_pool->cold_list = retval->next;
            (void)pthread_spin_unlock(&pool_list->lock);
            GF_ATOMIC_INC(pt_pool->parent->allocs_cold);
        } else {
            (void)pthread_spin_unlock(&pool_list->lock);
            GF_ATOMIC_INC(pt_pool->parent->allocs_stdc);
            retval = malloc((1 << pt_pool->parent->power_of_two) +
                            sizeof(pooled_obj_hdr_t));
#ifdef DEBUG
            hit = _gf_false;
#endif
        }
    }

    if (retval != NULL) {
        if (mem_pool) {
            retval->pool = mem_pool;
            retval->power_of_two = mem_pool->pool->power_of_two;
#ifdef DEBUG
            if (hit == _gf_true)
                GF_ATOMIC_INC(mem_pool->hit);
            else
                GF_ATOMIC_INC(mem_pool->miss);
#endif
        } else {
            retval->power_of_two = pool->power_of_two;
            retval->pool = NULL;
        }
        retval->magic = GF_MEM_HEADER_MAGIC;
        retval->pool_list = pool_list;
    }

    return retval;
}

void *
mem_get(struct mem_pool *mem_pool)
{
    if (!mem_pool) {
        gf_msg_callingfn("mem-pool", GF_LOG_ERROR, EINVAL, LG_MSG_INVALID_ARG,
                         "invalid argument");
        return NULL;
    }

#if defined(GF_DISABLE_MEMPOOL)
    return GF_MALLOC(mem_pool->sizeof_type, gf_common_mt_mem_pool);
#else
    pooled_obj_hdr_t *retval = mem_get_from_pool(mem_pool, NULL);
    if (!retval) {
        return NULL;
    }

    GF_ATOMIC_INC(mem_pool->active);

    return retval + 1;
#endif /* GF_DISABLE_MEMPOOL */
}

void
mem_put(void *ptr)
{
#if defined(GF_DISABLE_MEMPOOL)
    GF_FREE(ptr);
#else
    pooled_obj_hdr_t *hdr;
    per_thread_pool_list_t *pool_list;
    per_thread_pool_t *pt_pool;

    if (!ptr) {
        gf_msg_callingfn("mem-pool", GF_LOG_ERROR, EINVAL, LG_MSG_INVALID_ARG,
                         "invalid argument");
        return;
    }

    hdr = ((pooled_obj_hdr_t *)ptr) - 1;
    if (hdr->magic != GF_MEM_HEADER_MAGIC) {
        /* Not one of ours; don't touch it. */
        return;
    }
    pool_list = hdr->pool_list;
    pt_pool = &pool_list->pools[hdr->power_of_two - POOL_SMALLEST];

    if (hdr->pool)
        GF_ATOMIC_DEC(hdr->pool->active);

    hdr->magic = GF_MEM_INVALID_MAGIC;

    (void)pthread_spin_lock(&pool_list->lock);
    if (!pool_list->poison) {
        hdr->next = pt_pool->hot_list;
        pt_pool->hot_list = hdr;
        (void)pthread_spin_unlock(&pool_list->lock);
        GF_ATOMIC_INC(pt_pool->parent->frees_to_list);
    } else {
        /* If the owner thread of this element has terminated, we simply
         * release its memory. */
        (void)pthread_spin_unlock(&pool_list->lock);
        free(hdr);
    }
#endif /* GF_DISABLE_MEMPOOL */
}

void
mem_pool_destroy(struct mem_pool *pool)
{
    if (!pool)
        return;

    /* remove this pool from the owner (glusterfs_ctx_t) */
    LOCK(&pool->ctx->lock);
    {
        list_del(&pool->owner);
    }
    UNLOCK(&pool->ctx->lock);

    /* free this pool, but keep the mem_pool_shared */
    GF_FREE(pool);

    /*
     * Pools are now permanent, so the mem_pool->pool is kept around. All
     * of the objects *in* the pool will eventually be freed via the
     * pool-sweeper thread, and this way we don't have to add a lot of
     * reference-counting complexity.
     */
}