/* Copyright (c) 2015 Red Hat, Inc. This file is part of GlusterFS. This file is licensed to you under your choice of the GNU Lesser General Public License, version 3 or any later version (LGPLv3 or later), or the GNU General Public License, version 2 (GPLv2), in all cases as published by the Free Software Foundation. */ #include "arbiter.h" #include "arbiter-mem-types.h" #include #include #include static arbiter_inode_ctx_t * __arbiter_inode_ctx_get(inode_t *inode, xlator_t *this) { arbiter_inode_ctx_t *ctx = NULL; int ret = 0; uint64_t ctx_addr = 0; ret = __inode_ctx_get(inode, this, &ctx_addr); if (ret == 0) { ctx = (arbiter_inode_ctx_t *)(long)ctx_addr; goto out; } ctx = GF_CALLOC(1, sizeof(*ctx), gf_arbiter_mt_inode_ctx_t); if (!ctx) goto out; ret = __inode_ctx_put(inode, this, (uint64_t)(uintptr_t)ctx); if (ret) { GF_FREE(ctx); ctx = NULL; gf_log_callingfn(this->name, GF_LOG_ERROR, "failed to " "set the inode ctx (%s)", uuid_utoa(inode->gfid)); } out: return ctx; } static arbiter_inode_ctx_t * arbiter_inode_ctx_get(inode_t *inode, xlator_t *this) { arbiter_inode_ctx_t *ctx = NULL; LOCK(&inode->lock); { ctx = __arbiter_inode_ctx_get(inode, this); } UNLOCK(&inode->lock); return ctx; } int32_t arbiter_lookup_cbk(call_frame_t *frame, void *cookie, xlator_t *this, int32_t op_ret, int32_t op_errno, inode_t *inode, struct iatt *buf, dict_t *xdata, struct iatt *postparent) { arbiter_inode_ctx_t *ctx = NULL; if (op_ret != 0) goto unwind; ctx = arbiter_inode_ctx_get(inode, this); if (!ctx) { op_ret = -1; op_errno = ENOMEM; goto unwind; } memcpy(&ctx->iattbuf, buf, sizeof(ctx->iattbuf)); unwind: STACK_UNWIND_STRICT(lookup, frame, op_ret, op_errno, inode, buf, xdata, postparent); return 0; } int32_t arbiter_lookup(call_frame_t *frame, xlator_t *this, loc_t *loc, dict_t *xdata) { STACK_WIND(frame, arbiter_lookup_cbk, FIRST_CHILD(this), FIRST_CHILD(this)->fops->lookup, loc, xdata); return 0; } int32_t arbiter_truncate(call_frame_t *frame, xlator_t *this, loc_t *loc, off_t offset, dict_t *xdata) { arbiter_inode_ctx_t *ctx = NULL; struct iatt *buf = NULL; int32_t op_ret = 0; int32_t op_errno = 0; ctx = arbiter_inode_ctx_get(loc->inode, this); if (!ctx) { op_ret = -1; op_errno = ENOMEM; goto unwind; } buf = &ctx->iattbuf; unwind: STACK_UNWIND_STRICT(truncate, frame, op_ret, op_errno, buf, buf, NULL); return 0; } int32_t arbiter_ftruncate(call_frame_t *frame, xlator_t *this, fd_t *fd, off_t offset, dict_t *xdata) { arbiter_inode_ctx_t *ctx = NULL; struct iatt *buf = NULL; int32_t op_ret = 0; int32_t op_errno = 0; ctx = arbiter_inode_ctx_get(fd->inode, this); if (!ctx) { op_ret = -1; op_errno = ENOMEM; goto unwind; } buf = &ctx->iattbuf; unwind: STACK_UNWIND_STRICT(ftruncate, frame, op_ret, op_errno, buf, buf, NULL); return 0; } dict_t * arbiter_fill_writev_xdata(fd_t *fd, dict_t *xdata, xlator_t *this) { dict_t *rsp_xdata = NULL; int32_t ret = 0; int is_append = 1; if (!fd || !fd->inode || gf_uuid_is_null(fd->inode->gfid)) { goto out; } if (!xdata) goto out; rsp_xdata = dict_new(); if (!rsp_xdata) goto out; if (dict_get(xdata, GLUSTERFS_OPEN_FD_COUNT)) { ret = dict_set_uint32(rsp_xdata, GLUSTERFS_OPEN_FD_COUNT, fd->inode->fd_count); if (ret < 0) { gf_msg_debug(this->name, 0, "Failed to set dict value" " for GLUSTERFS_OPEN_FD_COUNT"); } } if (dict_get(xdata, GLUSTERFS_WRITE_IS_APPEND)) { ret = dict_set_uint32(rsp_xdata, GLUSTERFS_WRITE_IS_APPEND, is_append); if (ret < 0) { gf_msg_debug(this->name, 0, "Failed to set dict value" " for GLUSTERFS_WRITE_IS_APPEND"); } } out: return rsp_xdata; } int32_t arbiter_writev(call_frame_t *frame, xlator_t *this, fd_t *fd, struct iovec *vector, int32_t count, off_t off, uint32_t flags, struct iobref *iobref, dict_t *xdata) { arbiter_inode_ctx_t *ctx = NULL; struct iatt *buf = NULL; dict_t *rsp_xdata = NULL; int op_ret = 0; int op_errno = 0; ctx = arbiter_inode_ctx_get(fd->inode, this); if (!ctx) { op_ret = -1; op_errno = ENOMEM; goto unwind; } buf = &ctx->iattbuf; op_ret = iov_length(vector, count); rsp_xdata = arbiter_fill_writev_xdata(fd, xdata, this); unwind: STACK_UNWIND_STRICT(writev, frame, op_ret, op_errno, buf, buf, rsp_xdata); if (rsp_xdata) dict_unref(rsp_xdata); return 0; } int32_t arbiter_fallocate(call_frame_t *frame, xlator_t *this, fd_t *fd, int32_t keep_size, off_t offset, size_t len, dict_t *xdata) { arbiter_inode_ctx_t *ctx = NULL; struct iatt *buf = NULL; int op_ret = 0; int op_errno = 0; ctx = arbiter_inode_ctx_get(fd->inode, this); if (!ctx) { op_ret = -1; op_errno = ENOMEM; goto unwind; } buf = &ctx->iattbuf; unwind: STACK_UNWIND_STRICT(fallocate, frame, op_ret, op_errno, buf, buf, NULL); return 0; } int32_t arbiter_discard(call_frame_t *frame, xlator_t *this, fd_t *fd, off_t offset, size_t len, dict_t *xdata) { arbiter_inode_ctx_t *ctx = NULL; struct iatt *buf = NULL; int op_ret = 0; int op_errno = 0; ctx = arbiter_inode_ctx_get(fd->inode, this); if (!ctx) { op_ret = -1; op_errno = ENOMEM; goto unwind; } buf = &ctx->iattbuf; unwind: STACK_UNWIND_STRICT(discard, frame, op_ret, op_errno, buf, buf, NULL); return 0; } int32_t arbiter_zerofill(call_frame_t *frame, xlator_t *this, fd_t *fd, off_t offset, off_t len, dict_t *xdata) { arbiter_inode_ctx_t *ctx = NULL; struct iatt *buf = NULL; int op_ret = 0; int op_errno = 0; ctx = arbiter_inode_ctx_get(fd->inode, this); if (!ctx) { op_ret = -1; op_errno = ENOMEM; goto unwind; } buf = &ctx->iattbuf; unwind: STACK_UNWIND_STRICT(zerofill, frame, op_ret, op_errno, buf, buf, NULL); return 0; } static int32_t arbiter_readv(call_frame_t *frame, xlator_t *this, fd_t *fd, size_t size, off_t offset, uint32_t flags, dict_t *xdata) { STACK_UNWIND_STRICT(readv, frame, -1, ENOSYS, NULL, 0, NULL, NULL, NULL); return 0; } static int32_t arbiter_seek(call_frame_t *frame, xlator_t *this, fd_t *fd, off_t offset, gf_seek_what_t what, dict_t *xdata) { STACK_UNWIND_STRICT(seek, frame, -1, ENOSYS, 0, xdata); return 0; } int32_t mem_acct_init(xlator_t *this) { int ret = -1; ret = xlator_mem_acct_init(this, gf_arbiter_mt_end + 1); if (ret) gf_log(this->name, GF_LOG_ERROR, "Memory accounting " "initialization failed."); return ret; } int reconfigure(xlator_t *this, dict_t *options) { return 0; } int arbiter_forget(xlator_t *this, inode_t *inode) { arbiter_inode_ctx_t *ctx = NULL; uint64_t ctx_addr = 0; inode_ctx_del(inode, this, &ctx_addr); if (!ctx_addr) return 0; ctx = (arbiter_inode_ctx_t *)(long)ctx_addr; GF_FREE(ctx); return 0; } int32_t init(xlator_t *this) { if (!this->children || this->children->next) { gf_log(this->name, GF_LOG_ERROR, "'arbiter' not configured with exactly one child"); return -1; } if (!this->parents) gf_log(this->name, GF_LOG_ERROR, "dangling volume. check volfile "); return 0; } void fini(xlator_t *this) { return; } struct xlator_fops fops = { .lookup = arbiter_lookup, /* Return success for these inode write FOPS without winding it down to * posix; this is needed for AFR write transaction logic to work.*/ .truncate = arbiter_truncate, .writev = arbiter_writev, .ftruncate = arbiter_ftruncate, .fallocate = arbiter_fallocate, .discard = arbiter_discard, .zerofill = arbiter_zerofill, /* AFR is not expected to wind these inode read FOPS initiated by the * application to the arbiter brick. But in case a bug causes them * to be called, we return ENOSYS. */ .readv = arbiter_readv, .seek = arbiter_seek, /* The following inode read FOPS initiated by the application are not * wound by AFR either but internal logic like shd, glfsheal and * client side healing in AFR will send them for selfheal/ inode refresh * operations etc.,so we need to wind them down to posix: * * (f)stat, readdir(p), readlink, (f)getxattr.*/ /* All other FOPs not listed here are safe to be wound down to posix.*/ }; struct xlator_cbks cbks = { .forget = arbiter_forget, }; struct volume_options options[] = { {.key = {NULL}}, }; xlator_api_t xlator_api = { .init = init, .fini = fini, .reconfigure = reconfigure, .mem_acct_init = mem_acct_init, .op_version = {1}, /* Present from the initial version */ .fops = &fops, .cbks = &cbks, .options = options, .identifier = "arbiter", .category = GF_MAINTAINED, };