/* Copyright (c) 2008-2012 Red Hat, Inc. This file is part of GlusterFS. This file is licensed to you under your choice of the GNU Lesser General Public License, version 3 or any later version (LGPLv3 or later), or the GNU General Public License, version 2 (GPLv2), in all cases as published by the Free Software Foundation. */ #ifndef __AFR_H__ #define __AFR_H__ #include "call-stub.h" #include "compat-errno.h" #include "afr-mem-types.h" #include "libxlator.h" #include "timer.h" #include "syncop.h" #include "afr-self-heald.h" #include "afr-messages.h" #define AFR_PATHINFO_HEADER "REPLICATE:" #define AFR_SH_READDIR_SIZE_KEY "self-heal-readdir-size" #define AFR_SH_DATA_DOMAIN_FMT "%s:self-heal" #define AFR_DIRTY_DEFAULT AFR_XATTR_PREFIX ".dirty" #define AFR_DIRTY (((afr_private_t *)(THIS->private))->afr_dirty) #define AFR_LOCKEE_COUNT_MAX 3 #define AFR_DOM_COUNT_MAX 3 #define AFR_NUM_CHANGE_LOGS 3 /*data + metadata + entry*/ #define AFR_DEFAULT_SPB_CHOICE_TIMEOUT 300 /*in seconds*/ #define ARBITER_BRICK_INDEX 2 #define THIN_ARBITER_BRICK_INDEX 2 #define AFR_TA_DOM_NOTIFY "afr.ta.dom-notify" #define AFR_TA_DOM_MODIFY "afr.ta.dom-modify" #define AFR_HALO_MAX_LATENCY 99999 #define PFLAG_PENDING (1 << 0) #define PFLAG_SBRAIN (1 << 1) typedef int (*afr_lock_cbk_t)(call_frame_t *frame, xlator_t *this); typedef int (*afr_read_txn_wind_t)(call_frame_t *frame, xlator_t *this, int subvol); typedef int (*afr_inode_refresh_cbk_t)(call_frame_t *frame, xlator_t *this, int err); typedef int (*afr_changelog_resume_t)(call_frame_t *frame, xlator_t *this); #define AFR_COUNT(array, max) \ ({ \ int __i; \ int __res = 0; \ for (__i = 0; __i < max; __i++) \ if (array[__i]) \ __res++; \ __res; \ }) #define AFR_INTERSECT(dst, src1, src2, max) \ ({ \ int __i; \ for (__i = 0; __i < max; __i++) \ dst[__i] = src1[__i] && src2[__i]; \ }) #define AFR_CMP(a1, a2, len) \ ({ \ int __cmp = 0; \ int __i; \ for (__i = 0; __i < len; __i++) \ if (a1[__i] != a2[__i]) { \ __cmp = 1; \ break; \ } \ __cmp; \ }) #define AFR_IS_ARBITER_BRICK(priv, index) \ ((priv->arbiter_count == 1) && (index == ARBITER_BRICK_INDEX)) #define AFR_SET_ERROR_AND_CHECK_SPLIT_BRAIN(ret, errnum) \ do { \ local->op_ret = ret; \ local->op_errno = errnum; \ if (local->op_errno == EIO) \ gf_msg(this->name, GF_LOG_ERROR, local->op_errno, \ AFR_MSG_SPLIT_BRAIN, \ "Failing %s on gfid %s: " \ "split-brain observed.", \ gf_fop_list[local->op], uuid_utoa(local->inode->gfid)); \ } while (0) typedef enum { AFR_FAV_CHILD_NONE, AFR_FAV_CHILD_BY_SIZE, AFR_FAV_CHILD_BY_CTIME, AFR_FAV_CHILD_BY_MTIME, AFR_FAV_CHILD_BY_MAJORITY, AFR_FAV_CHILD_POLICY_MAX, } afr_favorite_child_policy; typedef enum { AFR_CHILD_UNKNOWN = -1, AFR_CHILD_ZERO, AFR_CHILD_ONE, AFR_CHILD_THIN_ARBITER, } afr_child_index; typedef enum { TA_WAIT_FOR_NOTIFY_LOCK_REL, /*FOP came after notify domain lock upcall notification and waiting for its release.*/ TA_GET_INFO_FROM_TA_FILE, /*FOP needs post-op on ta file to get *info about which brick is bad.*/ TA_INFO_IN_MEMORY_SUCCESS, /*Bad brick info is in memory and fop failed *on BAD brick - Success*/ TA_INFO_IN_MEMORY_FAILED, /*Bad brick info is in memory and fop failed *on GOOD brick - Failed*/ } afr_ta_fop_state_t; struct afr_nfsd { gf_boolean_t iamnfsd; uint32_t halo_max_latency_msec; }; typedef struct _afr_private { gf_lock_t lock; /* to guard access to child_count, etc */ unsigned int child_count; /* total number of children */ unsigned int arbiter_count; /*subset of child_count. Has to be 0 or 1.*/ xlator_t **children; inode_t *root_inode; /* For thin-arbiter. */ unsigned int thin_arbiter_count; /* 0 or 1 at the moment.*/ uuid_t ta_gfid; unsigned char ta_child_up; int ta_bad_child_index; off_t ta_notify_dom_lock_offset; gf_boolean_t release_ta_notify_dom_lock; unsigned int ta_in_mem_txn_count; unsigned int ta_on_wire_txn_count; struct list_head ta_waitq; struct list_head ta_onwireq; unsigned char *child_up; int64_t *child_latency; unsigned char *local; char **pending_key; char *data_self_heal; /* on/off/open */ char *data_self_heal_algorithm; /* name of algorithm */ unsigned int data_self_heal_window_size; /* max number of pipelined read/writes */ struct list_head heal_waiting; /*queue for files that need heal*/ uint32_t heal_wait_qlen; /*configurable queue length for heal_waiting*/ int32_t heal_waiters; /* No. of elements currently in wait queue.*/ struct list_head healing; /* queue for files that are undergoing background heal*/ uint32_t background_self_heal_count; /*configurable queue length for healing queue*/ int32_t healers; /* No. of elements currently undergoing background heal*/ gf_boolean_t metadata_self_heal; /* on/off */ gf_boolean_t entry_self_heal; /* on/off */ gf_boolean_t metadata_splitbrain_forced_heal; /* on/off */ int read_child; /* read-subvolume */ unsigned int hash_mode; /* for when read_child is not set */ gf_atomic_t *pending_reads; /*No. of pending read cbks per child.*/ int favorite_child; /* subvolume to be preferred in resolving split-brain cases */ afr_favorite_child_policy fav_child_policy; /*Policy to use for automatic resolution of split-brains.*/ unsigned int wait_count; /* # of servers to wait for success */ gf_timer_t *timer; /* launched when parent up is received */ gf_boolean_t optimistic_change_log; gf_boolean_t eager_lock; gf_boolean_t pre_op_compat; /* on/off */ uint32_t post_op_delay_secs; unsigned int quorum_count; char vol_uuid[UUID_SIZE + 1]; int32_t *last_event; /* @event_generation: Keeps count of number of events received which can potentially impact consistency decisions. The events are CHILD_UP and CHILD_DOWN, when we have to recalculate the freshness/staleness of copies to detect if changes had happened while the other server was down. CHILD_DOWN and CHILD_UP can also be received on network disconnect/reconnects and not necessarily server going down/up. Recalculating freshness/staleness on network events is equally important as we might have had a network split brain. */ uint32_t event_generation; gf_boolean_t choose_local; gf_boolean_t did_discovery; uint64_t sh_readdir_size; gf_boolean_t ensure_durability; char *sh_domain; char *afr_dirty; gf_boolean_t halo_enabled; uint32_t halo_max_latency_msec; uint32_t halo_max_replicas; uint32_t halo_min_replicas; afr_self_heald_t shd; struct afr_nfsd nfsd; gf_boolean_t consistent_metadata; uint64_t spb_choice_timeout; gf_boolean_t need_heal; /* pump dependencies */ void *pump_private; gf_boolean_t use_afr_in_pump; char *locking_scheme; gf_boolean_t full_lock; gf_boolean_t esh_granular; gf_boolean_t consistent_io; } afr_private_t; typedef enum { AFR_DATA_TRANSACTION, /* truncate, write, ... */ AFR_METADATA_TRANSACTION, /* chmod, chown, ... */ AFR_ENTRY_TRANSACTION, /* create, rmdir, ... */ AFR_ENTRY_RENAME_TRANSACTION, /* rename */ } afr_transaction_type; /* xattr format: trusted.afr.volume = [x y z] x - data pending y - metadata pending z - entry pending */ static inline int afr_index_for_transaction_type(afr_transaction_type type) { switch (type) { case AFR_DATA_TRANSACTION: return 0; case AFR_METADATA_TRANSACTION: return 1; case AFR_ENTRY_TRANSACTION: case AFR_ENTRY_RENAME_TRANSACTION: return 2; } return -1; /* make gcc happy */ } static inline int afr_index_from_ia_type(ia_type_t type) { switch (type) { case IA_IFDIR: return afr_index_for_transaction_type(AFR_ENTRY_TRANSACTION); case IA_IFREG: return afr_index_for_transaction_type(AFR_DATA_TRANSACTION); default: return -1; } } typedef struct { loc_t loc; char *basename; unsigned char *locked_nodes; int locked_count; } afr_entry_lockee_t; int afr_entry_lockee_cmp(const void *l1, const void *l2); typedef struct { loc_t *lk_loc; int lockee_count; afr_entry_lockee_t lockee[AFR_LOCKEE_COUNT_MAX]; struct gf_flock flock; const char *lk_basename; const char *lower_basename; const char *higher_basename; char lower_locked; char higher_locked; unsigned char *locked_nodes; unsigned char *lower_locked_nodes; int32_t lock_count; int32_t entrylk_lock_count; int32_t lk_call_count; int32_t lk_expected_count; int32_t lk_attempted_count; int32_t lock_op_ret; int32_t lock_op_errno; afr_lock_cbk_t lock_cbk; char *domain; /* Domain on which inode/entry lock/unlock in progress.*/ } afr_internal_lock_t; struct afr_reply { int valid; int32_t op_ret; int32_t op_errno; dict_t *xattr; /*For xattrop*/ dict_t *xdata; struct iatt poststat; struct iatt postparent; struct iatt prestat; struct iatt preparent; struct iatt preparent2; struct iatt postparent2; /* For rchecksum */ uint8_t checksum[SHA256_DIGEST_LENGTH]; gf_boolean_t buf_has_zeroes; gf_boolean_t fips_mode_rchecksum; /* For lookup */ int8_t need_heal; }; typedef enum { AFR_FD_NOT_OPENED, AFR_FD_OPENED, AFR_FD_OPENING } afr_fd_open_status_t; typedef struct { afr_fd_open_status_t *opened_on; /* which subvolumes the fd is open on */ int flags; /* the subvolume on which the latest sequence of readdirs (starting at offset 0) has begun. Till the next readdir request with 0 offset arrives, we continue to read off this subvol. */ int readdir_subvol; } afr_fd_ctx_t; typedef enum { AFR_FOP_LOCK_PARALLEL, AFR_FOP_LOCK_SERIAL, AFR_FOP_LOCK_QUORUM_FAILED, } afr_fop_lock_state_t; typedef struct _afr_inode_lock_t { /* @num_inodelks: Number of inodelks queried from the server, as queried through xdata in FOPs. Currently, used to decide if eager-locking must be temporarily disabled. */ int32_t num_inodelks; unsigned int event_generation; gf_boolean_t release; gf_boolean_t acquired; gf_timer_t *delay_timer; struct list_head owners; /*Transactions that are performing fop*/ struct list_head post_op; /*Transactions that are done with the fop *So can not conflict with the fops*/ struct list_head waiting; /*Transaction that are waiting for *conflicting transactions to complete*/ struct list_head frozen; /*Transactions that need to go as part of * next batch of eager-lock*/ } afr_lock_t; typedef struct _afr_inode_ctx { uint64_t read_subvol; uint64_t write_subvol; int lock_count; int spb_choice; gf_timer_t *timer; gf_boolean_t need_refresh; unsigned int *pre_op_done[AFR_NUM_CHANGE_LOGS]; int inherited[AFR_NUM_CHANGE_LOGS]; int on_disk[AFR_NUM_CHANGE_LOGS]; /* set if any write on this fd was a non stable write (i.e, without O_SYNC or O_DSYNC) */ gf_boolean_t witnessed_unstable_write; /* @open_fd_count: Number of open FDs queried from the server, as queried through xdata in FOPs. Currently, used to decide if eager-locking must be temporarily disabled. */ uint32_t open_fd_count; /*Only 2 types of transactions support eager-locks now. DATA/METADATA*/ afr_lock_t lock[2]; } afr_inode_ctx_t; typedef struct _afr_local { glusterfs_fop_t op; unsigned int call_count; /* @event_generation: copy of priv->event_generation taken at the time of starting the transaction. The copy is made so that we have a stable value through the various phases of the transaction. */ unsigned int event_generation; uint32_t open_fd_count; gf_boolean_t update_open_fd_count; int32_t num_inodelks; gf_boolean_t update_num_inodelks; gf_lkowner_t saved_lk_owner; int32_t op_ret; int32_t op_errno; int32_t **pending; int dirty[AFR_NUM_CHANGE_LOGS]; loc_t loc; loc_t newloc; fd_t *fd; afr_fd_ctx_t *fd_ctx; /* @child_up: copy of priv->child_up taken at the time of transaction start. The copy is taken so that we have a stable child_up array through the phases of the transaction as priv->child_up[i] can keep changing through time. */ unsigned char *child_up; /* @read_attempted: array of flags representing subvolumes where read operations of the read transaction have already been attempted. The array is first pre-filled with down subvolumes, and as reads are performed on other subvolumes, those are set as well. This way if the read operation fails we do not retry on that subvolume again. */ unsigned char *read_attempted; /* @readfn: pointer to function which will perform the read operation on a given subvolume. Used in read transactions. */ afr_read_txn_wind_t readfn; /* @refreshed: the inode was "refreshed" (i.e, pending xattrs from all subvols freshly inspected and inode ctx updated accordingly) as part of this transaction already. */ gf_boolean_t refreshed; /* @inode: the inode on which the read txn is performed on. ref'ed and copied from either fd->inode or loc.inode */ inode_t *inode; /* @parent[2]: parent inode[s] on which directory transactions are performed. */ inode_t *parent; inode_t *parent2; /* @readable: array of flags representing servers from which a read can be performed. This is the output of afr_inode_refresh() */ unsigned char *readable; unsigned char *readable2; /*For rename transaction*/ int read_subvol; /* Current read subvolume */ afr_inode_refresh_cbk_t refreshfn; /* @refreshinode: Inode currently getting refreshed. */ inode_t *refreshinode; /*To handle setattr/setxattr on yet to be linked inode from dht*/ uuid_t refreshgfid; /* @pre_op_compat: compatibility mode of pre-op. send a separate pre-op and op operations as part of transaction, rather than combining */ gf_boolean_t pre_op_compat; dict_t *xattr_req; afr_internal_lock_t internal_lock; dict_t *dict; int optimistic_change_log; /* Is the current writev() going to perform a stable write? i.e, is fd->flags or @flags writev param have O_SYNC or O_DSYNC? */ gf_boolean_t stable_write; /* This write appended to the file. Nnot necessarily O_APPEND, just means the offset of write was at the end of file. */ gf_boolean_t append_write; /* This struct contains the arguments for the "continuation" (scheme-like) of fops */ struct { struct { gf_boolean_t needs_fresh_lookup; uuid_t gfid_req; } lookup; struct { unsigned char buf_set; struct statvfs buf; } statfs; struct { int32_t flags; fd_t *fd; } open; struct { int32_t cmd; struct gf_flock user_flock; struct gf_flock ret_flock; unsigned char *locked_nodes; } lk; /* inode read */ struct { int32_t mask; int last_index; /* index of the child we tried previously */ } access; struct { int last_index; } stat; struct { int last_index; } fstat; struct { size_t size; int last_index; } readlink; struct { char *name; int last_index; long xattr_len; } getxattr; struct { size_t size; off_t offset; int last_index; uint32_t flags; } readv; /* dir read */ struct { int success_count; int32_t op_ret; int32_t op_errno; uint32_t *checksum; } opendir; struct { int32_t op_ret; int32_t op_errno; size_t size; off_t offset; dict_t *dict; gf_boolean_t failed; int last_index; } readdir; /* inode write */ struct { struct iatt prebuf; struct iatt postbuf; } inode_wfop; // common structure for all inode-write-fops struct { int32_t op_ret; struct iovec *vector; struct iobref *iobref; int32_t count; off_t offset; uint32_t flags; } writev; struct { off_t offset; } truncate; struct { off_t offset; } ftruncate; struct { struct iatt in_buf; int32_t valid; } setattr; struct { struct iatt in_buf; int32_t valid; } fsetattr; struct { dict_t *dict; int32_t flags; } setxattr; struct { dict_t *dict; int32_t flags; } fsetxattr; struct { char *name; } removexattr; struct { dict_t *xattr; gf_xattrop_flags_t optype; } xattrop; /* dir write */ struct { inode_t *inode; struct iatt buf; struct iatt preparent; struct iatt postparent; struct iatt prenewparent; struct iatt postnewparent; } dir_fop; // common structure for all dir fops struct { fd_t *fd; dict_t *params; int32_t flags; mode_t mode; } create; struct { dev_t dev; mode_t mode; dict_t *params; } mknod; struct { int32_t mode; dict_t *params; } mkdir; struct { int flags; } rmdir; struct { dict_t *params; char *linkpath; } symlink; struct { int32_t mode; off_t offset; size_t len; } fallocate; struct { off_t offset; size_t len; } discard; struct { off_t offset; off_t len; struct iatt prebuf; struct iatt postbuf; } zerofill; struct { char *volume; int32_t cmd; int32_t in_cmd; struct gf_flock in_flock; struct gf_flock flock; void *xdata; } inodelk; struct { char *volume; char *basename; entrylk_cmd in_cmd; entrylk_cmd cmd; entrylk_type type; void *xdata; } entrylk; struct { off_t offset; gf_seek_what_t what; } seek; struct { int32_t datasync; } fsync; struct { struct gf_lease user_lease; struct gf_lease ret_lease; unsigned char *locked_nodes; } lease; } cont; struct { off_t start, len; gf_boolean_t eager_lock_on; gf_boolean_t do_eager_unlock; char *basename; char *new_basename; loc_t parent_loc; loc_t new_parent_loc; afr_transaction_type type; /* stub to resume on destruction of the transaction frame */ call_stub_t *resume_stub; struct list_head owner_list; struct list_head wait_list; unsigned char *pre_op; /* Changelog xattr dict for [f]xattrop*/ dict_t **changelog_xdata; unsigned char *pre_op_sources; /* @failed_subvols: subvolumes on which a pre-op or a FOP failed. */ unsigned char *failed_subvols; /* @dirtied: flag which indicates whether we set dirty flag in the OP. Typically true when we are performing operation on more than one subvol and optimistic changelog is disabled A 'true' value set in @dirtied flag means an 'undirtying' has to be done in POST-OP phase. */ gf_boolean_t dirtied; /* @inherited: flag which indicates that the dirty flags of the previous transaction were inherited */ gf_boolean_t inherited; /* @no_uninherit: flag which indicates that a pre_op_uninherit() must _not_ be attempted (and returned as failure) always. This flag is set when a hard pre-op is performed, but not accounted for it in fd_ctx->on_disk[]. Such transactions are "isolated" from the pre-op piggybacking entirely and therefore uninherit must not be attempted. */ gf_boolean_t no_uninherit; /* @uninherit_done: @uninherit_value: The above pair variables make pre_op_uninherit() idempotent. Both are FALSE initially. The first call to pre_op_uninherit sets @uninherit_done to TRUE and the return value to @uninherit_value. Further calls will check for @uninherit_done to be TRUE and if so will simply return @uninherit_value. */ gf_boolean_t uninherit_done; gf_boolean_t uninherit_value; gf_boolean_t in_flight_sb; /* Indicator for occurrence of split-brain while in the middle of a txn. */ int32_t in_flight_sb_errno; /* This is where the cause of the failure on the last good copy of the file is stored. */ /* @changelog_resume: function to be called after changlogging (either pre-op or post-op) is done */ afr_changelog_resume_t changelog_resume; call_frame_t *main_frame; /*Fop frame*/ call_frame_t *frame; /*Transaction frame*/ int (*wind)(call_frame_t *frame, xlator_t *this, int subvol); int (*unwind)(call_frame_t *frame, xlator_t *this); /* post-op hook */ } transaction; syncbarrier_t barrier; /* extra data for fops */ dict_t *xdata_req; dict_t *xdata_rsp; dict_t *xattr_rsp; /*for [f]xattrop*/ mode_t umask; int xflag; gf_boolean_t do_discovery; struct afr_reply *replies; /* For client side background heals. */ struct list_head healer; call_frame_t *heal_frame; gf_boolean_t need_full_crawl; afr_fop_lock_state_t fop_lock_state; gf_boolean_t is_read_txn; afr_inode_ctx_t *inode_ctx; /*For thin-arbiter transactions.*/ unsigned char ta_child_up; struct list_head ta_waitq; struct list_head ta_onwireq; afr_ta_fop_state_t fop_state; int ta_failed_subvol; } afr_local_t; typedef struct afr_spbc_timeout { call_frame_t *frame; gf_boolean_t d_spb; gf_boolean_t m_spb; loc_t *loc; int spb_child_index; } afr_spbc_timeout_t; typedef struct afr_spb_status { call_frame_t *frame; loc_t *loc; } afr_spb_status_t; typedef struct afr_empty_brick_args { call_frame_t *frame; loc_t loc; int empty_index; char *op_type; } afr_empty_brick_args_t; typedef struct afr_read_subvol_args { ia_type_t ia_type; uuid_t gfid; } afr_read_subvol_args_t; typedef struct afr_granular_esh_args { fd_t *heal_fd; xlator_t *xl; call_frame_t *frame; gf_boolean_t mismatch; /* flag to represent occurrence of type/gfid mismatch */ } afr_granular_esh_args_t; int afr_inode_get_readable(call_frame_t *frame, inode_t *inode, xlator_t *this, unsigned char *readable, int *event_p, int type); int afr_inode_read_subvol_get(inode_t *inode, xlator_t *this, unsigned char *data_subvols, unsigned char *metadata_subvols, int *event_generation); int __afr_inode_read_subvol_get(inode_t *inode, xlator_t *this, unsigned char *data_subvols, unsigned char *metadata_subvols, int *event_generation); int __afr_inode_read_subvol_set(inode_t *inode, xlator_t *this, unsigned char *data_subvols, unsigned char *metadata_subvol, int event_generation); int afr_inode_read_subvol_set(inode_t *inode, xlator_t *this, unsigned char *data_subvols, unsigned char *metadata_subvols, int event_generation); int afr_inode_event_gen_reset(inode_t *inode, xlator_t *this); int afr_read_subvol_select_by_policy(inode_t *inode, xlator_t *this, unsigned char *readable, afr_read_subvol_args_t *args); int afr_inode_read_subvol_type_get(inode_t *inode, xlator_t *this, unsigned char *readable, int *event_p, int type); int afr_read_subvol_get(inode_t *inode, xlator_t *this, int *subvol_p, unsigned char *readables, int *event_p, afr_transaction_type type, afr_read_subvol_args_t *args); #define afr_data_subvol_get(i, t, s, r, e, a) \ afr_read_subvol_get(i, t, s, r, e, AFR_DATA_TRANSACTION, a) #define afr_metadata_subvol_get(i, t, s, r, e, a) \ afr_read_subvol_get(i, t, s, r, e, AFR_METADATA_TRANSACTION, a) int afr_inode_refresh(call_frame_t *frame, xlator_t *this, inode_t *inode, uuid_t gfid, afr_inode_refresh_cbk_t cbk); int32_t afr_notify(xlator_t *this, int32_t event, void *data, void *data2); int xattr_is_equal(dict_t *this, char *key1, data_t *value1, void *data); int afr_init_entry_lockee(afr_entry_lockee_t *lockee, afr_local_t *local, loc_t *loc, char *basename, int child_count); void afr_entry_lockee_cleanup(afr_internal_lock_t *int_lock); int afr_attempt_lock_recovery(xlator_t *this, int32_t child_index); int afr_mark_locked_nodes(xlator_t *this, fd_t *fd, unsigned char *locked_nodes); void afr_set_lk_owner(call_frame_t *frame, xlator_t *this, void *lk_owner); int afr_set_lock_number(call_frame_t *frame, xlator_t *this); int32_t afr_unlock(call_frame_t *frame, xlator_t *this); int afr_nonblocking_entrylk(call_frame_t *frame, xlator_t *this); int afr_nonblocking_inodelk(call_frame_t *frame, xlator_t *this); int afr_blocking_lock(call_frame_t *frame, xlator_t *this); int afr_internal_lock_finish(call_frame_t *frame, xlator_t *this); int __afr_fd_ctx_set(xlator_t *this, fd_t *fd); afr_fd_ctx_t * afr_fd_ctx_get(fd_t *fd, xlator_t *this); int afr_build_parent_loc(loc_t *parent, loc_t *child, int32_t *op_errno); int afr_locked_nodes_count(unsigned char *locked_nodes, int child_count); int afr_replies_interpret(call_frame_t *frame, xlator_t *this, inode_t *inode, gf_boolean_t *start_heal); void afr_local_replies_wipe(afr_local_t *local, afr_private_t *priv); void afr_local_cleanup(afr_local_t *local, xlator_t *this); int afr_frame_return(call_frame_t *frame); int afr_open(call_frame_t *frame, xlator_t *this, loc_t *loc, int32_t flags, fd_t *fd, dict_t *xdata); void afr_local_transaction_cleanup(afr_local_t *local, xlator_t *this); int afr_cleanup_fd_ctx(xlator_t *this, fd_t *fd); #define AFR_STACK_UNWIND(fop, frame, op_ret, op_errno, params...) \ do { \ afr_local_t *__local = NULL; \ xlator_t *__this = NULL; \ int32_t __op_ret = 0; \ int32_t __op_errno = 0; \ \ __op_ret = op_ret; \ __op_errno = op_errno; \ if (frame) { \ __local = frame->local; \ __this = frame->this; \ afr_handle_inconsistent_fop(frame, &__op_ret, &__op_errno); \ if (__local && __local->is_read_txn) \ afr_pending_read_decrement(__this->private, \ __local->read_subvol); \ frame->local = NULL; \ } \ \ STACK_UNWIND_STRICT(fop, frame, __op_ret, __op_errno, params); \ if (__local) { \ afr_local_cleanup(__local, __this); \ mem_put(__local); \ } \ } while (0) #define AFR_STACK_DESTROY(frame) \ do { \ afr_local_t *__local = NULL; \ xlator_t *__this = NULL; \ __local = frame->local; \ __this = frame->this; \ frame->local = NULL; \ STACK_DESTROY(frame->root); \ if (__local) { \ afr_local_cleanup(__local, __this); \ mem_put(__local); \ } \ } while (0); #define AFR_FRAME_INIT(frame, op_errno) \ ({ \ frame->local = mem_get0(THIS->local_pool); \ if (afr_local_init(frame->local, THIS->private, &op_errno)) { \ afr_local_cleanup(frame->local, THIS); \ mem_put(frame->local); \ frame->local = NULL; \ }; \ frame->local; \ }) #define AFR_STACK_RESET(frame) \ do { \ afr_local_t *__local = NULL; \ xlator_t *__this = NULL; \ __local = frame->local; \ __this = frame->this; \ frame->local = NULL; \ int __opr; \ STACK_RESET(frame->root); \ if (__local) { \ afr_local_cleanup(__local, __this); \ mem_put(__local); \ } \ AFR_FRAME_INIT(frame, __opr); \ } while (0) /* allocate and return a string that is the basename of argument */ static inline char * AFR_BASENAME(const char *str) { char *__tmp_str = NULL; char *__basename_str = NULL; __tmp_str = gf_strdup(str); __basename_str = gf_strdup(basename(__tmp_str)); GF_FREE(__tmp_str); return __basename_str; } call_frame_t * afr_copy_frame(call_frame_t *base); int afr_transaction_local_init(afr_local_t *local, xlator_t *this); int32_t afr_marker_getxattr(call_frame_t *frame, xlator_t *this, loc_t *loc, const char *name, afr_local_t *local, afr_private_t *priv); int afr_local_init(afr_local_t *local, afr_private_t *priv, int32_t *op_errno); int afr_internal_lock_init(afr_internal_lock_t *lk, size_t child_count); int afr_higher_errno(int32_t old_errno, int32_t new_errno); int afr_final_errno(afr_local_t *local, afr_private_t *priv); int afr_xattr_req_prepare(xlator_t *this, dict_t *xattr_req); void afr_fix_open(fd_t *fd, xlator_t *this); afr_fd_ctx_t * afr_fd_ctx_get(fd_t *fd, xlator_t *this); void afr_set_low_priority(call_frame_t *frame); int afr_child_fd_ctx_set(xlator_t *this, fd_t *fd, int32_t child, int flags); void afr_matrix_cleanup(int32_t **pending, unsigned int m); int32_t ** afr_matrix_create(unsigned int m, unsigned int n); int ** afr_mark_pending_changelog(afr_private_t *priv, unsigned char *pending, dict_t *xattr, ia_type_t iat); void afr_filter_xattrs(dict_t *xattr); /* * Special value indicating we should use the "auto" quorum method instead of * a fixed value (including zero to turn off quorum enforcement). */ #define AFR_QUORUM_AUTO INT_MAX int afr_fd_report_unstable_write(xlator_t *this, afr_local_t *local); gf_boolean_t afr_fd_has_witnessed_unstable_write(xlator_t *this, inode_t *inode); void afr_reply_wipe(struct afr_reply *reply); void afr_replies_wipe(struct afr_reply *replies, int count); gf_boolean_t afr_xattrs_are_equal(dict_t *dict1, dict_t *dict2); gf_boolean_t afr_is_xattr_ignorable(char *key); int afr_get_heal_info(call_frame_t *frame, xlator_t *this, loc_t *loc); int afr_heal_splitbrain_file(call_frame_t *frame, xlator_t *this, loc_t *loc); int afr_get_split_brain_status(void *opaque); int afr_get_split_brain_status_cbk(int ret, call_frame_t *frame, void *opaque); int afr_inode_split_brain_choice_set(inode_t *inode, xlator_t *this, int spb_choice); int afr_inode_split_brain_choice_get(inode_t *inode, xlator_t *this, int *spb_choice); int afr_get_child_index_from_name(xlator_t *this, char *name); int afr_is_split_brain(call_frame_t *frame, xlator_t *this, inode_t *inode, uuid_t gfid, gf_boolean_t *d_spb, gf_boolean_t *m_spb); int afr_spb_choice_timeout_cancel(xlator_t *this, inode_t *inode); int afr_set_split_brain_choice(int ret, call_frame_t *frame, void *opaque); gf_boolean_t afr_get_need_heal(xlator_t *this); void afr_set_need_heal(xlator_t *this, afr_local_t *local); int afr_selfheal_data_open(xlator_t *this, inode_t *inode, fd_t **fd); int afr_get_msg_id(char *op_type); int afr_set_in_flight_sb_status(xlator_t *this, call_frame_t *frame, inode_t *inode); int32_t afr_quorum_errno(afr_private_t *priv); gf_boolean_t afr_is_consistent_io_possible(afr_local_t *local, afr_private_t *priv, int32_t *op_errno); void afr_handle_inconsistent_fop(call_frame_t *frame, int32_t *op_ret, int32_t *op_errno); void afr_inode_write_fill(call_frame_t *frame, xlator_t *this, int child_index, int32_t op_ret, int32_t op_errno, struct iatt *prebuf, struct iatt *postbuf, dict_t *xdata); void afr_process_post_writev(call_frame_t *frame, xlator_t *this); void afr_writev_unwind(call_frame_t *frame, xlator_t *this); void afr_writev_copy_outvars(call_frame_t *src_frame, call_frame_t *dst_frame); void afr_update_uninodelk(afr_local_t *local, afr_internal_lock_t *int_lock, int32_t child_index); int afr_is_inodelk_transaction(afr_transaction_type type); afr_fd_ctx_t * __afr_fd_ctx_get(fd_t *fd, xlator_t *this); gf_boolean_t afr_is_inode_refresh_reqd(inode_t *inode, xlator_t *this, int event_gen1, int event_gen2); int afr_serialize_xattrs_with_delimiter(call_frame_t *frame, xlator_t *this, char *buf, const char *default_str, int32_t *serz_len, char delimiter); gf_boolean_t afr_is_symmetric_error(call_frame_t *frame, xlator_t *this); int __afr_inode_ctx_get(xlator_t *this, inode_t *inode, afr_inode_ctx_t **ctx); uint64_t afr_write_subvol_get(call_frame_t *frame, xlator_t *this); int afr_write_subvol_set(call_frame_t *frame, xlator_t *this); int afr_write_subvol_reset(call_frame_t *frame, xlator_t *this); int afr_set_inode_local(xlator_t *this, afr_local_t *local, inode_t *inode); int afr_fill_ta_loc(xlator_t *this, loc_t *loc); int afr_ta_post_op_lock(xlator_t *this, loc_t *loc); int afr_ta_post_op_unlock(xlator_t *this, loc_t *loc); gf_boolean_t afr_is_pending_set(xlator_t *this, dict_t *xdata, int type); int __afr_get_up_children_count(afr_private_t *priv); call_frame_t * afr_ta_frame_create(xlator_t *this); gf_boolean_t afr_ta_has_quorum(afr_private_t *priv, afr_local_t *local); void afr_ta_lock_release_synctask(xlator_t *this); #endif /* __AFR_H__ */