/* Copyright (c) 2008-2010 Gluster, Inc. This file is part of GlusterFS. GlusterFS is free software; you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. GlusterFS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see . */ #include "mem-pool.h" #include "logging.h" #include "xlator.h" #include #include #define GF_MEM_POOL_LIST_BOUNDARY (sizeof(struct list_head)) #define GF_MEM_POOL_PAD_BOUNDARY (GF_MEM_POOL_LIST_BOUNDARY + sizeof(int)) #define mem_pool_chunkhead2ptr(head) ((head) + GF_MEM_POOL_PAD_BOUNDARY) #define mem_pool_ptr2chunkhead(ptr) ((ptr) - GF_MEM_POOL_PAD_BOUNDARY) #define is_mem_chunk_in_use(ptr) (*ptr == 1) #define GF_MEM_HEADER_SIZE (4 + sizeof (size_t) + sizeof (xlator_t *) + 4 + 8) #define GF_MEM_TRAILER_SIZE 8 #define GF_MEM_HEADER_MAGIC 0xCAFEBABE #define GF_MEM_TRAILER_MAGIC 0xBAADF00D #define GLUSTERFS_ENV_MEM_ACCT_STR "GLUSTERFS_DISABLE_MEM_ACCT" static int gf_mem_acct_enable = 0; int gf_mem_acct_is_enabled () { return gf_mem_acct_enable; } void gf_mem_acct_enable_set () { char *opt = NULL; long val = -1; #ifdef DEBUG gf_mem_acct_enable = 1; return; #endif opt = getenv (GLUSTERFS_ENV_MEM_ACCT_STR); if (!opt) return; val = strtol (opt, NULL, 0); if (val) gf_mem_acct_enable = 0; else gf_mem_acct_enable = 1; } void gf_mem_set_acct_info (xlator_t *xl, char **alloc_ptr, size_t size, uint32_t type) { char *ptr = NULL; if (!alloc_ptr) return; ptr = (char *) (*alloc_ptr); if (!xl) { GF_ASSERT (0); } if (!(xl->mem_acct.rec)) { GF_ASSERT (0); } if (type > xl->mem_acct.num_types) { GF_ASSERT (0); } LOCK(&xl->mem_acct.rec[type].lock); { xl->mem_acct.rec[type].size += size; xl->mem_acct.rec[type].num_allocs++; xl->mem_acct.rec[type].max_size = max (xl->mem_acct.rec[type].max_size, xl->mem_acct.rec[type].size); xl->mem_acct.rec[type].max_num_allocs = max (xl->mem_acct.rec[type].max_num_allocs, xl->mem_acct.rec[type].num_allocs); } UNLOCK(&xl->mem_acct.rec[type].lock); *(uint32_t *)(ptr) = type; ptr = ptr + 4; memcpy (ptr, &size, sizeof(size_t)); ptr += sizeof (size_t); memcpy (ptr, &xl, sizeof(xlator_t *)); ptr += sizeof (xlator_t *); *(uint32_t *)(ptr) = GF_MEM_HEADER_MAGIC; ptr = ptr + 4; ptr = ptr + 8; //padding *(uint32_t *) (ptr + size) = GF_MEM_TRAILER_MAGIC; *alloc_ptr = (void *)ptr; return; } void * __gf_calloc (size_t nmemb, size_t size, uint32_t type) { size_t tot_size = 0; size_t req_size = 0; char *ptr = NULL; xlator_t *xl = NULL; if (!gf_mem_acct_enable) return CALLOC (nmemb, size); xl = THIS; req_size = nmemb * size; tot_size = req_size + GF_MEM_HEADER_SIZE + GF_MEM_TRAILER_SIZE; ptr = calloc (1, tot_size); if (!ptr) return NULL; gf_mem_set_acct_info (xl, &ptr, req_size, type); return (void *)ptr; } void * __gf_malloc (size_t size, uint32_t type) { size_t tot_size = 0; char *ptr = NULL; xlator_t *xl = NULL; if (!gf_mem_acct_enable) return MALLOC (size); xl = THIS; tot_size = size + GF_MEM_HEADER_SIZE + GF_MEM_TRAILER_SIZE; ptr = malloc (tot_size); if (!ptr) return NULL; gf_mem_set_acct_info (xl, &ptr, size, type); return (void *)ptr; } void * __gf_realloc (void *ptr, size_t size) { size_t tot_size = 0; char *orig_ptr = NULL; xlator_t *xl = NULL; uint32_t type = 0; if (!gf_mem_acct_enable) return realloc (ptr, size); tot_size = size + GF_MEM_HEADER_SIZE + GF_MEM_TRAILER_SIZE; orig_ptr = (char *)ptr - 8 - 4; GF_ASSERT (*(uint32_t *)orig_ptr == GF_MEM_HEADER_MAGIC); orig_ptr = orig_ptr - sizeof(xlator_t *); xl = *((xlator_t **)orig_ptr); orig_ptr = (char *)ptr - GF_MEM_HEADER_SIZE; type = *(uint32_t *)orig_ptr; ptr = realloc (orig_ptr, tot_size); if (!ptr) return NULL; gf_mem_set_acct_info (xl, (char **)&ptr, size, type); return (void *)ptr; } int gf_vasprintf (char **string_ptr, const char *format, va_list arg) { va_list arg_save; char *str = NULL; int size = 0; int rv = 0; if (!string_ptr || !format) return -1; va_copy (arg_save, arg); size = vsnprintf (NULL, 0, format, arg); size++; str = GF_MALLOC (size, gf_common_mt_asprintf); if (str == NULL) { /* * Strictly speaking, GNU asprintf doesn't do this, * but the caller isn't checking the return value. */ gf_log ("libglusterfs", GF_LOG_CRITICAL, "failed to allocate memory"); return -1; } rv = vsnprintf (str, size, format, arg_save); *string_ptr = str; return (rv); } int gf_asprintf (char **string_ptr, const char *format, ...) { va_list arg; int rv = 0; va_start (arg, format); rv = gf_vasprintf (string_ptr, format, arg); va_end (arg); return rv; } void __gf_free (void *free_ptr) { size_t req_size = 0; char *ptr = NULL; uint32_t type = 0; xlator_t *xl = NULL; if (!gf_mem_acct_enable) { FREE (free_ptr); return; } if (!free_ptr) return; ptr = (char *)free_ptr - 8 - 4; if (GF_MEM_HEADER_MAGIC != *(uint32_t *)ptr) { //Possible corruption, assert here GF_ASSERT (0); } *(uint32_t *)ptr = 0; ptr = ptr - sizeof(xlator_t *); memcpy (&xl, ptr, sizeof(xlator_t *)); if (!xl) { //gf_free expects xl to be available GF_ASSERT (0); } if (!xl->mem_acct.rec) { ptr = (char *)free_ptr - GF_MEM_HEADER_SIZE; goto free; } ptr = ptr - sizeof(size_t); memcpy (&req_size, ptr, sizeof (size_t)); ptr = ptr - 4; type = *(uint32_t *)ptr; if (GF_MEM_TRAILER_MAGIC != *(uint32_t *) ((char *)free_ptr + req_size)) { // This points to a memory overrun GF_ASSERT (0); } *(uint32_t *) ((char *)free_ptr + req_size) = 0; LOCK (&xl->mem_acct.rec[type].lock); { xl->mem_acct.rec[type].size -= req_size; xl->mem_acct.rec[type].num_allocs--; } UNLOCK (&xl->mem_acct.rec[type].lock); free: FREE (ptr); } struct mem_pool * mem_pool_new_fn (unsigned long sizeof_type, unsigned long count) { struct mem_pool *mem_pool = NULL; unsigned long padded_sizeof_type = 0; void *pool = NULL; int i = 0; struct list_head *list = NULL; if (!sizeof_type || !count) { gf_log ("mem-pool", GF_LOG_ERROR, "invalid argument"); return NULL; } padded_sizeof_type = sizeof_type + GF_MEM_POOL_PAD_BOUNDARY; mem_pool = GF_CALLOC (sizeof (*mem_pool), 1, gf_common_mt_mem_pool); if (!mem_pool) return NULL; LOCK_INIT (&mem_pool->lock); INIT_LIST_HEAD (&mem_pool->list); mem_pool->padded_sizeof_type = padded_sizeof_type; mem_pool->cold_count = count; mem_pool->real_sizeof_type = sizeof_type; pool = GF_CALLOC (count, padded_sizeof_type, gf_common_mt_long); if (!pool) { GF_FREE (mem_pool); return NULL; } for (i = 0; i < count; i++) { list = pool + (i * (padded_sizeof_type)); INIT_LIST_HEAD (list); list_add_tail (list, &mem_pool->list); } mem_pool->pool = pool; mem_pool->pool_end = pool + (count * (padded_sizeof_type)); return mem_pool; } void* mem_get0 (struct mem_pool *mem_pool) { void *ptr = NULL; if (!mem_pool) { gf_log ("mem-pool", GF_LOG_ERROR, "invalid argument"); return NULL; } ptr = mem_get(mem_pool); if (ptr) memset(ptr, 0, mem_pool->real_sizeof_type); return ptr; } void * mem_get (struct mem_pool *mem_pool) { struct list_head *list = NULL; void *ptr = NULL; int *in_use = NULL; if (!mem_pool) { gf_log ("mem-pool", GF_LOG_ERROR, "invalid argument"); return NULL; } LOCK (&mem_pool->lock); { if (mem_pool->cold_count) { list = mem_pool->list.next; list_del (list); mem_pool->hot_count++; mem_pool->cold_count--; ptr = list; in_use = (ptr + GF_MEM_POOL_LIST_BOUNDARY); *in_use = 1; goto fwd_addr_out; } /* This is a problem area. If we've run out of * chunks in our slab above, we need to allocate * enough memory to service this request. * The problem is, these indvidual chunks will fail * the first address range check in __is_member. Now, since * we're not allocating a full second slab, we wont have * enough info perform the range check in __is_member. * * I am working around this by performing a regular allocation * , just the way the caller would've done when not using the * mem-pool. That also means, we're not padding the size with * the list_head structure because, this will not be added to * the list of chunks that belong to the mem-pool allocated * initially. * * This is the best we can do without adding functionality for * managing multiple slabs. That does not interest us at present * because it is too much work knowing that a better slab * allocator is coming RSN. */ ptr = MALLOC (mem_pool->real_sizeof_type); /* Memory coming from the heap need not be transformed from a * chunkhead to a usable pointer since it is not coming from * the pool. */ goto unlocked_out; } fwd_addr_out: ptr = mem_pool_chunkhead2ptr (ptr); unlocked_out: UNLOCK (&mem_pool->lock); return ptr; } static int __is_member (struct mem_pool *pool, void *ptr) { if (!pool || !ptr) { gf_log ("mem-pool", GF_LOG_ERROR, "invalid argument"); return -1; } if (ptr < pool->pool || ptr >= pool->pool_end) return 0; if ((mem_pool_ptr2chunkhead (ptr) - pool->pool) % pool->padded_sizeof_type) return -1; return 1; } void mem_put (struct mem_pool *pool, void *ptr) { struct list_head *list = NULL; int *in_use = NULL; void *head = NULL; if (!pool || !ptr) { gf_log ("mem-pool", GF_LOG_ERROR, "invalid argument"); return; } LOCK (&pool->lock); { switch (__is_member (pool, ptr)) { case 1: list = head = mem_pool_ptr2chunkhead (ptr); in_use = (head + GF_MEM_POOL_LIST_BOUNDARY); if (!is_mem_chunk_in_use(in_use)) { gf_log_callingfn ("mem-pool", GF_LOG_CRITICAL, "mem_put called on freed ptr %p of mem " "pool %p", ptr, pool); break; } pool->hot_count--; pool->cold_count++; *in_use = 0; list_add (list, &pool->list); break; case -1: /* For some reason, the address given is within * the address range of the mem-pool but does not align * with the expected start of a chunk that includes * the list headers also. Sounds like a problem in * layers of clouds up above us. ;) */ abort (); break; case 0: /* The address is outside the range of the mem-pool. We * assume here that this address was allocated at a * point when the mem-pool was out of chunks in mem_get * or the programmer has made a mistake by calling the * wrong de-allocation interface. We do * not have enough info to distinguish between the two * situations. */ FREE (ptr); break; default: /* log error */ break; } } UNLOCK (&pool->lock); } void mem_pool_destroy (struct mem_pool *pool) { if (!pool) return; LOCK_DESTROY (&pool->lock); GF_FREE (pool->pool); GF_FREE (pool); return; }