#!/usr/bin/env python # texttable - module for creating simple ASCII tables # Copyright (C) 2003-2010 Gerome Fournier # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # Incorporated from texttable.py downloaded from # http://jefke.free.fr/stuff/python/texttable/texttable-0.7.0.tar.gz import sys import string try: if sys.version >= '2.3': import textwrap elif sys.version >= '2.2': from optparse import textwrap else: from optik import textwrap except ImportError: sys.stderr.write("Can't import textwrap module!\n") raise try: True, False except NameError: (True, False) = (1, 0) def len(iterable): """Redefining len here so it will be able to work with non-ASCII characters """ if not isinstance(iterable, str): return iterable.__len__() try: return len(unicode(iterable, 'utf')) except: return iterable.__len__() class ArraySizeError(Exception): """Exception raised when specified rows don't fit the required size """ def __init__(self, msg): self.msg = msg Exception.__init__(self, msg, '') def __str__(self): return self.msg class Texttable: BORDER = 1 HEADER = 1 << 1 HLINES = 1 << 2 VLINES = 1 << 3 def __init__(self, max_width=80): """Constructor - max_width is an integer, specifying the maximum width of the table - if set to 0, size is unlimited, therefore cells won't be wrapped """ if max_width <= 0: max_width = False self._max_width = max_width self._deco = Texttable.VLINES | Texttable.HLINES | Texttable.BORDER | \ Texttable.HEADER self.set_chars(['-', '|', '+', '=']) self.reset() def reset(self): """Reset the instance - reset rows and header """ self._hline_string = None self._row_size = None self._header = [] self._rows = [] def header(self, array): """Specify the header of the table """ self._check_row_size(array) self._header = map(str, array) def add_row(self, array): """Add a row in the rows stack - cells can contain newlines and tabs """ self._check_row_size(array) self._rows.append(map(str, array)) def add_rows(self, rows, header=True): """Add several rows in the rows stack - The 'rows' argument can be either an iterator returning arrays, or a by-dimensional array - 'header' specifies if the first row should be used as the header of the table """ # nb: don't use 'iter' on by-dimensional arrays, to get a # usable code for python 2.1 if header: if hasattr(rows, '__iter__') and hasattr(rows, 'next'): self.header(rows.next()) else: self.header(rows[0]) rows = rows[1:] for row in rows: self.add_row(row) def set_chars(self, array): """Set the characters used to draw lines between rows and columns - the array should contain 4 fields: [horizontal, vertical, corner, header] - default is set to: ['-', '|', '+', '='] """ if len(array) != 4: raise ArraySizeError, "array should contain 4 characters" array = [ x[:1] for x in [ str(s) for s in array ] ] (self._char_horiz, self._char_vert, self._char_corner, self._char_header) = array def set_deco(self, deco): """Set the table decoration - 'deco' can be a combinaison of: Texttable.BORDER: Border around the table Texttable.HEADER: Horizontal line below the header Texttable.HLINES: Horizontal lines between rows Texttable.VLINES: Vertical lines between columns All of them are enabled by default - example: Texttable.BORDER | Texttable.HEADER """ self._deco = deco def set_cols_align(self, array): """Set the desired columns alignment - the elements of the array should be either "l", "c" or "r": * "l": column flushed left * "c": column centered * "r": column flushed right """ self._check_row_size(array) self._align = array def set_cols_valign(self, array): """Set the desired columns vertical alignment - the elements of the array should be either "t", "m" or "b": * "t": column aligned on the top of the cell * "m": column aligned on the middle of the cell * "b": column aligned on the bottom of the cell """ self._check_row_size(array) self._valign = array def set_cols_width(self, array): """Set the desired columns width - the elements of the array should be integers, specifying the width of each column. For example: [10, 20, 5] """ self._check_row_size(array) try: array = map(int, array) if reduce(min, array) <= 0: raise ValueError except ValueError: sys.stderr.write("Wrong argument in column width specification\n") raise self._width = array def draw(self): """Draw the table - the table is returned as a whole string """ if not self._header and not self._rows: return self._compute_cols_width() self._check_align() out = "" if self._has_border(): out += self._hline() if self._header: out += self._draw_line(self._header, isheader=True) if self._has_header(): out += self._hline_header() length = 0 for row in self._rows: length += 1 out += self._draw_line(row) if self._has_hlines() and length < len(self._rows): out += self._hline() if self._has_border(): out += self._hline() return out[:-1] def _check_row_size(self, array): """Check that the specified array fits the previous rows size """ if not self._row_size: self._row_size = len(array) elif self._row_size != len(array): raise ArraySizeError, "array should contain %d elements" \ % self._row_size def _has_vlines(self): """Return a boolean, if vlines are required or not """ return self._deco & Texttable.VLINES > 0 def _has_hlines(self): """Return a boolean, if hlines are required or not """ return self._deco & Texttable.HLINES > 0 def _has_border(self): """Return a boolean, if border is required or not """ return self._deco & Texttable.BORDER > 0 def _has_header(self): """Return a boolean, if header line is required or not """ return self._deco & Texttable.HEADER > 0 def _hline_header(self): """Print header's horizontal line """ return self._build_hline(True) def _hline(self): """Print an horizontal line """ if not self._hline_string: self._hline_string = self._build_hline() return self._hline_string def _build_hline(self, is_header=False): """Return a string used to separated rows or separate header from rows """ horiz = self._char_horiz if (is_header): horiz = self._char_header # compute cell separator s = "%s%s%s" % (horiz, [horiz, self._char_corner][self._has_vlines()], horiz) # build the line l = string.join([horiz*n for n in self._width], s) # add border if needed if self._has_border(): l = "%s%s%s%s%s\n" % (self._char_corner, horiz, l, horiz, self._char_corner) else: l += "\n" return l def _len_cell(self, cell): """Return the width of the cell Special characters are taken into account to return the width of the cell, such like newlines and tabs """ cell_lines = cell.split('\n') maxi = 0 for line in cell_lines: length = 0 parts = line.split('\t') for part, i in zip(parts, range(1, len(parts) + 1)): length = length + len(part) if i < len(parts): length = (length/8 + 1)*8 maxi = max(maxi, length) return maxi def _compute_cols_width(self): """Return an array with the width of each column If a specific width has been specified, exit. If the total of the columns width exceed the table desired width, another width will be computed to fit, and cells will be wrapped. """ if hasattr(self, "_width"): return maxi = [] if self._header: maxi = [ self._len_cell(x) for x in self._header ] for row in self._rows: for cell,i in zip(row, range(len(row))): try: maxi[i] = max(maxi[i], self._len_cell(cell)) except (TypeError, IndexError): maxi.append(self._len_cell(cell)) items = len(maxi) length = reduce(lambda x,y: x+y, maxi) if self._max_width and length + items*3 + 1 > self._max_width: maxi = [(self._max_width - items*3 -1) / items \ for n in range(items)] self._width = maxi def _check_align(self): """Check if alignment has been specified, set default one if not """ if not hasattr(self, "_align"): self._align = ["l"]*self._row_size if not hasattr(self, "_valign"): self._valign = ["t"]*self._row_size def _draw_line(self, line, isheader=False): """Draw a line Loop over a single cell length, over all the cells """ line = self._splitit(line, isheader) space = " " out = "" for i in range(len(line[0])): if self._has_border(): out += "%s " % self._char_vert length = 0 for cell, width, align in zip(line, self._width, self._align): length += 1 cell_line = cell[i] fill = width - len(cell_line) if isheader: align = "c" if align == "r": out += "%s " % (fill * space + cell_line) elif align == "c": out += "%s " % (fill/2 * space + cell_line \ + (fill/2 + fill%2) * space) else: out += "%s " % (cell_line + fill * space) if length < len(line): out += "%s " % [space, self._char_vert][self._has_vlines()] out += "%s\n" % ['', self._char_vert][self._has_border()] return out def _splitit(self, line, isheader): """Split each element of line to fit the column width Each element is turned into a list, result of the wrapping of the string to the desired width """ line_wrapped = [] for cell, width in zip(line, self._width): array = [] for c in cell.split('\n'): array.extend(textwrap.wrap(unicode(c, 'utf'), width)) line_wrapped.append(array) max_cell_lines = reduce(max, map(len, line_wrapped)) for cell, valign in zip(line_wrapped, self._valign): if isheader: valign = "t" if valign == "m": missing = max_cell_lines - len(cell) cell[:0] = [""] * (missing / 2) cell.extend([""] * (missing / 2 + missing % 2)) elif valign == "b": cell[:0] = [""] * (max_cell_lines - len(cell)) else: cell.extend([""] * (max_cell_lines - len(cell))) return line_wrapped # Copyright (c) 2010-2011 Gluster, Inc. # This file is part of GlusterFS. # GlusterFS is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published # by the Free Software Foundation; either version 3 of the License, # or (at your option) any later version. # GlusterFS is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see # . graph_available = True try: import numpy as np import matplotlib.pyplot as plt except ImportError: graph_available = False import re import sys from optparse import OptionParser # Global dict-of-dict holding the latency data # latency[xlator-name][op-name] latencies = {} counts = {} totals = {} def collect_data (f): """Collect latency data from the file object f and store it in the global variable @latencies""" # example dump file line: # fuse.latency.TRUNCATE=3147.000,4 for line in f: m = re.search ("(\w+)\.\w+.(\w+)=(\w+\.\w+),(\w+),(\w+.\w+)", line) if m and float(m.group(3)) != 0: xlator = m.group(1) op = m.group(2) time = m.group(3) count = m.group(4) total = m.group(5) if not xlator in latencies.keys(): latencies[xlator] = dict() if not xlator in counts.keys(): counts[xlator] = dict() if not xlator in totals.keys(): totals[xlator] = dict() latencies[xlator][op] = time counts[xlator][op] = count totals[xlator][op] = total def calc_latency_heights (xlator_order): heights = map (lambda x: [], xlator_order) N = len (xlator_order) for i in range (N): xl = xlator_order[i] k = latencies[xl].keys() k.sort() if i == len (xlator_order) - 1: # bottom-most xlator heights[i] = [float (latencies[xl][key]) for key in k] else: next_xl = xlator_order[i+1] this_xl_time = [latencies[xl][key] for key in k] next_xl_time = [latencies[next_xl][key] for key in k] heights[i] = map (lambda x, y: float (x) - float (y), this_xl_time, next_xl_time) return heights # have sufficient number of colors colors = ["violet", "blue", "green", "yellow", "orange", "red"] def latency_profile (title, xlator_order, mode): heights = calc_latency_heights (xlator_order) N = len (latencies[xlator_order[0]].keys()) Nxl = len (xlator_order) ind = np.arange (N) width = 0.35 pieces = map (lambda x: [], xlator_order) bottoms = map (lambda x: [], xlator_order) bottoms[Nxl-1] = map (lambda x: 0, latencies[xlator_order[0]].keys()) k = latencies[xlator_order[0]].keys() k.sort() for i in range (Nxl-1): xl = xlator_order[i+1] bottoms[i] = [float(latencies[xl][key]) for key in k] if mode == 'text': print "\n%sLatency profile for %s\n" % (' '*20, title) print "Average latency (microseconds):\n" table = Texttable() table.set_cols_align(["l", "r"] + ["r"] * len(xlator_order)) rows = [] header = ['OP', 'OP Average (us)'] + xlator_order rows = [] for op in k: sum = reduce (lambda x, y: x + y, [heights[xlator_order.index(xl)][k.index(op)] for xl in xlator_order], 0) row = [op] row += ["%5.2f" % sum] for xl in xlator_order: op_index = k.index(op) row += ["%5.2f" % (heights[xlator_order.index(xl)][op_index])] rows.append(row) def row_sort(r1, r2): v1 = float(r1[1]) v2 = float(r2[1]) if v1 < v2: return -1 elif v1 == v2: return 0 else: return 1 rows.sort(row_sort, reverse=True) table.add_rows([header] + rows) print table.draw() elif mode == 'graph': for i in range(Nxl): pieces[i] = plt.bar (ind, heights[i], width, color=colors[i], bottom=bottoms[i]) plt.ylabel ("Average Latency (microseconds)") plt.title ("Latency Profile for '%s'" % title) k = latencies[xlator_order[0]].keys() k.sort () plt.xticks (ind+width/2., k) m = round (max(map (float, latencies[xlator_order[0]].values())), -2) plt.yticks (np.arange(0, m + m*0.1, m/10)) plt.legend (map (lambda p: p[0], pieces), xlator_order) plt.show () else: print "Unknown mode specified!" sys.exit(1) def fop_distribution (title, xlator_order, mode): plt.ylabel ("Percentage of calls") plt.title ("FOP distribution for '%s'" % title) k = counts[xlator_order[0]].keys() k.sort () N = len (latencies[xlator_order[0]].keys()) ind = np.arange(N) width = 0.35 total = 0 top_xl = xlator_order[0] for op in k: total += int(counts[top_xl][op]) heights = [] for op in k: heights.append (float(counts[top_xl][op])/total * 100) if mode == 'text': print "\n%sFOP distribution for %s\n" % (' '*20, title) print "Total number of calls: %d\n" % total table = Texttable() table.set_cols_align(["l", "r", "r"]) rows = [] header = ["OP", "% of Calls", "Count"] for op in k: row = [op, "%5.2f" % (float(counts[top_xl][op])/total * 100), counts[top_xl][op]] rows.append(row) def row_sort(r1, r2): v1 = float(r1[1]) v2 = float(r2[1]) if v1 < v2: return -1 elif v1 == v2: return 0 else: return 1 rows.sort(row_sort, reverse=True) table.add_rows([header] + rows) print table.draw() elif mode == 'graph': bars = plt.bar (ind, heights, width, color="red") for bar in bars: height = bar.get_height() plt.text (bar.get_x()+bar.get_width()/2., 1.05*height, "%d%%" % int(height)) plt.xticks(ind+width/2., k) plt.yticks(np.arange (0, 110, 10)) plt.show() else: print "mode not specified!" sys.exit(1) def calc_workload_heights (xlator_order, scaling): workload_heights = map (lambda x: [], xlator_order) top_xl = xlator_order[0] N = len (xlator_order) for i in range (N): xl = xlator_order[i] k = totals[xl].keys() k.sort() if i == len (xlator_order) - 1: # bottom-most xlator workload_heights[i] = [float (totals[xl][key]) / float(totals[top_xl][key]) * scaling[k.index(key)] for key in k] else: next_xl = xlator_order[i+1] this_xl_time = [float(totals[xl][key]) / float(totals[top_xl][key]) * scaling[k.index(key)] for key in k] next_xl_time = [float(totals[next_xl][key]) / float(totals[top_xl][key]) * scaling[k.index(key)] for key in k] workload_heights[i] = map (lambda x, y: (float (x) - float (y)), this_xl_time, next_xl_time) return workload_heights def workload_profile(title, xlator_order, mode): plt.ylabel ("Percentage of Total Time") plt.title ("Workload Profile for '%s'" % title) k = totals[xlator_order[0]].keys() k.sort () N = len(totals[xlator_order[0]].keys()) Nxl = len(xlator_order) ind = np.arange(N) width = 0.35 total = 0 top_xl = xlator_order[0] for op in k: total += float(totals[top_xl][op]) p_heights = [] for op in k: p_heights.append (float(totals[top_xl][op])/total * 100) heights = calc_workload_heights (xlator_order, p_heights) pieces = map (lambda x: [], xlator_order) bottoms = map (lambda x: [], xlator_order) bottoms[Nxl-1] = map (lambda x: 0, totals[xlator_order[0]].keys()) for i in range (Nxl-1): xl = xlator_order[i+1] k = totals[xl].keys() k.sort() bottoms[i] = [float(totals[xl][key]) / float(totals[top_xl][key]) * p_heights[k.index(key)] for key in k] if mode == 'text': print "\n%sWorkload profile for %s\n" % (' '*20, title) print "Total Time: %d microseconds = %.1f seconds = %.1f minutes\n" % (total, total / 1000000.0, total / 6000000.0) table = Texttable() table.set_cols_align(["l", "r"] + ["r"] * len(xlator_order)) rows = [] header = ['OP', 'OP Total (%)'] + xlator_order rows = [] for op in k: sum = reduce (lambda x, y: x + y, [heights[xlator_order.index(xl)][k.index(op)] for xl in xlator_order], 0) row = [op] row += ["%5.2f" % sum] for xl in xlator_order: op_index = k.index(op) row += ["%5.2f" % heights[xlator_order.index(xl)][op_index]] rows.append(row) def row_sort(r1, r2): v1 = float(r1[1]) v2 = float(r2[1]) if v1 < v2: return -1 elif v1 == v2: return 0 else: return 1 rows.sort(row_sort, reverse=True) table.add_rows([header] + rows) print table.draw() elif mode == 'graph': for i in range(Nxl): pieces[i] = plt.bar (ind, heights[i], width, color=colors[i], bottom=bottoms[i]) for key in k: bar = pieces[Nxl-1][k.index(key)] plt.text (bar.get_x() + bar.get_width()/2., 1.05*p_heights[k.index(key)], "%d%%" % int(p_heights[k.index(key)])) plt.xticks(ind+width/2., k) plt.yticks(np.arange (0, 110, 10)) plt.legend (map (lambda p: p[0], pieces), xlator_order) plt.show() else: print "Unknown mode specified!" sys.exit(1) def main (): parser = OptionParser(usage="usage: %prog [-l | -d | -w] -x ") parser.add_option("-l", "--latency", dest="latency", action="store_true", help="Produce latency profile") parser.add_option("-d", "--distribution", dest="distribution", action="store_true", help="Produce distribution of FOPs") parser.add_option("-w", "--workload", dest="workload", action="store_true", help="Produce workload profile") parser.add_option("-t", "--title", dest="title", help="Set the title of the graph") parser.add_option("-x", "--xlator-order", dest="xlator_order", help="Specify the order of xlators") parser.add_option("-m", "--mode", dest="mode", help="Output format, can be text[default] or graph") (options, args) = parser.parse_args() if len(args) != 1: parser.error("Incorrect number of arguments") if (options.xlator_order): xlator_order = options.xlator_order.split() else: print "xlator order must be specified" sys.exit(1) collect_data(file (args[0], 'r')) mode = 'text' if (options.mode): mode = options.mode if options.mode == 'graph' and graph_available == False: print "matplotlib not available, falling back to text mode" mode = 'text' if (options.latency): latency_profile (options.title, xlator_order, mode) if (options.distribution): fop_distribution(options.title, xlator_order, mode) if (options.workload): workload_profile(options.title, xlator_order, mode) main ()