
Automatic File Replication (AFR) in GlusterFS

Vikas Gorur <vikas@zresearch.com>

December 18, 2008

Overview

This document describes the design and usage of the AFR translator in Glus-
terFS. This document is valid for the 1.4.x releases, and not earlier ones.

The AFR translator of GlusterFS aims to keep identical copies of a �le on all
its subvolumes, as far as possible. It tries to do this by performing all �lesystem
mutation operations (writing data, creating �les, changing ownership, etc.) on
all its subvolumes in such a way that if an operation succeeds on atleast one
subvolume, all other subvolumes can later be brought up to date.

In the rest of the document the terms �subvolume� and �server� are used inter-
changeably, trusting that it will cause no confusion to the reader.

Usage

A sample volume declaration for AFR looks like this:

volume afr

type cluster/afr

options, see below for description

subvolumes brick1 brick2

end-volume

This de�nes an AFR volume with two subvolumes, brick1, and brick2. For
AFR to work properly, it is essential that its subvolumes support extended
attributes. This means that you should choose a backend �lesystem that
supports extended attributes, like XFS, ReiserFS, or Ext3.

The storage volumes used as backend for AFR must have a posix-locks volume
loaded above them.

1

volume brick1

type features/posix-locks

subvolumes brick1-ds

end-volume

Design

Read algorithm

All operations that do not modify the �le or directory are sent to all the sub-
volumes and the �rst successful reply is returned to the application.

The read() system call (reading data from a �le) is an exception. For read()
calls, AFR tries to do load balancing by sending all reads from a particular �le
to a particular server.

The read algorithm is also a�ected by the option read-subvolume; see below for
details.

Classes of �le operations

AFR divides all �lesystem write operations into three classes:

• data: Operations that modify the contents of a �le (write, truncate).

• metadata: Operations that modify attributes of a �le or directory (per-
missions, ownership, etc.).

• entry: Operations that create or delete directory entries (mkdir, create,
rename, rmdir, unlink, etc.).

Locking and Change Log

To ensure consistency across subvolumes, AFR holds a lock whenever a modi�-
cation is being made to a �le or directory. By default, AFR considers the �rst
subvolume as the sole lock server. However, the number of lock servers can be
increased upto the total number of subvolumes.

The change log is a set of extended attributes associated with �les and directories
that AFR maintains. The change log keeps track of the changes made to �les
and directories (data, metadata, entry) so that the self-heal algorithm knows
which copy of a �le or directory is the most recent one.

2

Write algorithm

The algorithm for all write operations (data, metadata, entry) is:

1. Lock the �le (or directory) on all of the lock servers (see options below).

2. Write change log entries on all servers.

3. Perform the operation.

4. Erase change log entries.

5. Unlock the �le (or directory) on all of the lock servers.

The above algorithm is a simpli�ed version intended for general users. Please
refer to the source code for the full details.

Self-Heal

AFR automatically tries to �x any inconsistencies it detects among di�erent
copies of a �le. It uses information in the change log to determine which copy
is the �correct� version.

Self-heal is triggered when a �le or directory is �rst �accessed�, that is, the
�rst time any operation is attempted on it. The self-heal algorithm does the
following things:

If the entry being accessed is a directory:

• The contents of the �correct� version is replicated on all subvolumes, by
deleting entries and creating entries as necessary.

If the entry being accessed is a �le:

• If the �le does not exist on some subvolumes, it is created.

• If there is a mismatch in the size of the �le, or ownership, or permission,
it is �xed.

• If the change log indicates that some copies need updating, they are up-
dated.

3

Split-brain

It may happen that one AFR client can access only some of the servers in a
cluster and another AFR client can access the remaining servers. Or it may
happen that in a cluster of two servers, one server goes down and comes back
up, but the other goes down immediately. Both these scenarios result in a
�split-brain�.

In a split-brain situation, there will be two or more copies of a �le, all of which
are �correct� in some sense. AFR without manual intervention has no way of
knowing what to do, since it cannot consider any single copy as de�nitive, nor
does it know of any meaningful way to merge the copies.

If AFR detects that a split-brain has happened on a �le, it disallows opening of
that �le. You will have to manually resolve the con�ict by deleting all but one
copy of the �le. Alternatively you can set an automatic split-brain resolution
policy by using the `favorite-child' option (see below).

Translator Options

AFR accepts the following options:

read-subvolume (default: none)

The value of this option must be the name of a subvolume. If given, all read
operations are sent to only the speci�ed subvolume, instead of being balanced
across all subvolumes.

favorite-child (default: none)

The value of this option must be the name of a subvolume. If given, the speci�ed
subvolume will be preferentially used in resolving con�icts (�split-brain�). This
means if a discrepancy is noticed in the attributes or content of a �le, the copy
on the `favorite-child' will be considered the de�nitive version and its contents
will overwrite the contents of all other copies. Use this option with caution! It
is possible to lose data with this option. If you are in doubt, do not specify this
option.

Self-heal options

Setting any of these options to �o�� prevents that kind of self-heal from being
done on a �le or directory. For example, if metadata self-heal is turned o�,
permissions and ownership are no longer �xed automatically.

4

data-self-heal (default: on)

Enable/disable self-healing of �le contents.

metadata-self-heal (default: o�)

Enable/disable self-healing of metadata (permissions, ownership, modi�cation
times).

entry-self-heal (default: on)

Enable/disable self-healing of directory entries.

Change Log options

If any of these options is turned o�, it disables writing of change log entries for
that class of �le operations. That is, steps 2 and 4 of the write algorithm (see
above) are not done. Note that if the change log is not written, the self-heal
algorithm cannot determine the �correct� version of a �le and hence self-heal
will only be able to �x �obviously� wrong things (such as a �le existing on only
one node).

data-change-log (default: on)

Enable/disable writing of change log for data operations.

metadata-change-log (default: on)

Enable/disable writing of change log for metadata operations.

entry-change-log (default: on)

Enable/disable writing of change log for entry operations.

Locking options

These options let you specify the number of lock servers to use for each class
of �le operations. The default values are satisfactory in most cases. If you are
extra paranoid, you may want to increase the values. However, be very cautious
if you set the data- or entry- lock server counts to zero, since this can result
in lost data. For example, if you set the data-lock-server-count to zero, and

5

two applications write to the same region of a �le, there is a possibility that
none of your servers will have all the data. In other words, the copies will be
inconsistent, and incomplete. Do not set data- and entry- lock server counts
to zero unless you absolutely know what you are doing and agree to not hold
GlusterFS responsible for any lost data.

data-lock-server-count (default: 1)

Number of lock servers to use for data operations.

metadata-lock-server-count (default: 0)

Number of lock servers to use for metadata operations.

entry-lock-server-count (default: 1)

Number of lock servers to use for entry operations.

Known Issues

Self-heal of �le with more than one link (hard links):

Consider two servers, A and B. Assume A is down, and the user creates a �le
`new' as a hard link to a �le `old'. When A comes back up, AFR will see that
the �le `new' does not exist on A, and self-heal will create the �le and copy the
contents from B. However, now on server A the �le `new' is not a link to the �le
`old' but an entirely di�erent �le.

We know of no easy way to �x this problem, but we will try to �x it in forth-
coming releases.

File re-opening after a server comes back up:

If a server A goes down and comes back up, any �les which were opened while
A was down and are still open will not have their writes replicated on A. In
other words, data replication only happens on those servers which were alive
when the �le was opened.

This is a rather tricky issue but we hope to �x it very soon.

6

Frequently Asked Questions

1. How can I force self-heal to happen?

You can force self-heal to happen on your cluster by running a script or a
command that accesses every �le. A simple way to do it would be:

$ ls -lR

Run the command in all directories which you want to forcibly self-heal.

2. Which backend �lesystem should I use for AFR?

You can use any backend �lesystem that supports extended attributes. We
know of users successfully using XFR, ReiserFS, and Ext3.

3. What can I do to improve AFR performance?

Try loading performance translators such as io-threads, write-behind, io-cache,
and read-ahead depending on your workload. If you are willing to sacri�ce
correctness in corner cases, you can experiment with the lock-server-count and
the change-log options (see above). As warned earlier, be very careful!

4. How can I selectively replicate �les?

There is no support for selective replication in AFR itself. You can achieve
selective replication by loading the unify translator over AFR, and using the
switch scheduler. Con�gure unify with two subvolumes, one of them being AFR.
Using the switch scheduler, schedule all �les for which you need replication to
the AFR subvolume. Consult unify and switch documentation for more details.

Contact

If you need more assistance on AFR, contact us on the mailing list <gluster-
users@gluster.org> (visit gluster.org for details on how to subscribe).

Send you comments and suggestions about this document to <vikas@zresearch.com>.

7

