\documentclass{book}[12pt] \usepackage{graphicx} % \usepackage{fancyhdr} % \pagestyle{fancy} \begin{document} % \headheight 117pt % \rhead{\includegraphics{zr-logo.eps}} \author{Gluster} \title{GlusterFS 1.3 Hacker's Guide} \date{June 1, 2007} \maketitle \frontmatter \tableofcontents \mainmatter \chapter{Introduction} \section{Coding guidelines} GlusterFS uses Git for version control. To get the latest source do: \begin{verbatim} $ git clone git://git.gluster.com/glusterfs.git glusterfs \end{verbatim} \noindent GlusterFS follows the GNU coding standards\footnote{http://www.gnu.org/prep/standards\_toc.html} for the most part. \chapter{Major components} \section{libglusterfs} \texttt{libglusterfs} contains supporting code used by all the other components. The important files here are: \texttt{dict.c}: This is an implementation of a serializable dictionary type. It is used by the protocol code to send requests and replies. It is also used to pass options to translators. \texttt{logging.c}: This is a thread-safe logging library. The log messages go to a file (default \texttt{/usr/local/var/log/glusterfs/*}). \texttt{protocol.c}: This file implements the GlusterFS on-the-wire protocol. The protocol itself is a simple ASCII protocol, designed to be easy to parse and be human readable. A sample GlusterFS protocol block looks like this: \begin{verbatim} Block Start header 0000000000000023 callid 00000001 type 00000016 op xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx human-readable name 00000000000000000000000000000ac3 block size <...> block Block End \end{verbatim} \texttt{stack.h}: This file defines the \texttt{STACK\_WIND} and \texttt{STACK\_UNWIND} macros which are used to implement the parallel stack that is maintained for inter-xlator calls. See the \textsl{Taking control of the stack} section below for more details. \texttt{spec.y}: This contains the Yacc grammar for the GlusterFS specification file, and the parsing code. Draw diagrams of trees Two rules: (1) directory structure is same (2) file can exist only on one node \section{glusterfs-fuse} \section{glusterfsd} \section{transport} \section{scheduler} \section{xlator} \chapter{xlators} \section{Taking control of the stack} One can think of STACK\_WIND/UNWIND as a very specific RPC mechanism. % \includegraphics{stack.eps} \section{Overview of xlators} \flushleft{\LARGE\texttt{cluster/}} \vskip 2ex \flushleft{\Large\texttt{afr}} \vskip 2ex \flushleft{\Large\texttt{stripe}} \vskip 2ex \flushleft{\Large\texttt{unify}} \vskip 4ex \flushleft{\LARGE\texttt{debug/}} \vskip 2ex \flushleft{\Large\texttt{trace}} \vskip 2ex The trace xlator simply logs all fops and mops, and passes them through to its child. \vskip 4ex \flushleft{\LARGE\texttt{features/}} \flushleft{\Large\texttt{posix-locks}} \vskip 2ex This xlator implements \textsc{posix} record locking semantics over any kind of storage. \vskip 4ex \flushleft{\LARGE\texttt{performance/}} \flushleft{\Large\texttt{io-threads}} \vskip 2ex \flushleft{\Large\texttt{read-ahead}} \vskip 2ex \flushleft{\Large\texttt{stat-prefetch}} \vskip 2ex \flushleft{\Large\texttt{write-behind}} \vskip 2ex \vskip 4ex \flushleft{\LARGE\texttt{protocol/}} \vskip 2ex \flushleft{\Large\texttt{client}} \vskip 2ex \flushleft{\Large\texttt{server}} \vskip 2ex \vskip 4ex \flushleft{\LARGE\texttt{storage/}} \flushleft{\Large\texttt{posix}} \vskip 2ex The \texttt{posix} xlator is the one which actually makes calls to the on-disk filesystem. Currently this is the only storage xlator available. However, plans to develop other storage xlators, such as one for Amazon's S3 service, are on the roadmap. \chapter{Writing a simple xlator} \noindent In this section we're going to write a rot13 xlator. ``Rot13'' is a simple substitution cipher which obscures a text by replacing each letter with the letter thirteen places down the alphabet. So `a' (0) would become `n' (12), `b' would be 'm', and so on. Rot13 applied to a piece of ciphertext yields the plaintext again, because rot13 is its own inverse, since: \[ x_c = x + 13\; (mod\; 26) \] \[ x_c + 13\; (mod\; 26) = x + 13 + 13\; (mod\; 26) = x \] First we include the requisite headers. \begin{verbatim} #include #include #include "glusterfs.h" #include "xlator.h" #include "logging.h" /* * This is a rot13 ``encryption'' xlator. It rot13's data when * writing to disk and rot13's it back when reading it. * This xlator is meant as an example, not for production * use ;) (hence no error-checking) */ \end{verbatim} Then we write the rot13 function itself. For simplicity, we only transform lower case letters. Any other byte is passed through as it is. \begin{verbatim} /* We only handle lower case letters for simplicity */ static void rot13 (char *buf, int len) { int i; for (i = 0; i < len; i++) { if (isalpha (buf[i])) buf[i] = (buf[i] - 'a' + 13) % 26; else if (buf[i] <= 26) buf[i] = (buf[i] + 13) % 26 + 'a'; } } \end{verbatim} Next comes a utility function whose purpose will be clear after looking at the code below. \begin{verbatim} static void rot13_iovec (struct iovec *vector, int count) { int i; for (i = 0; i < count; i++) { rot13 (vector[i].iov_base, vector[i].iov_len); } } \end{verbatim} \begin{verbatim} static int32_t rot13_readv_cbk (call_frame_t *frame, call_frame_t *prev_frame, xlator_t *this, int32_t op_ret, int32_t op_errno, struct iovec *vector, int32_t count) { rot13_iovec (vector, count); STACK_UNWIND (frame, op_ret, op_errno, vector, count); return 0; } static int32_t rot13_readv (call_frame_t *frame, xlator_t *this, dict_t *ctx, size_t size, off_t offset) { STACK_WIND (frame, rot13_readv_cbk, FIRST_CHILD (this), FIRST_CHILD (this)->fops->readv, ctx, size, offset); return 0; } static int32_t rot13_writev_cbk (call_frame_t *frame, call_frame_t *prev_frame, xlator_t *this, int32_t op_ret, int32_t op_errno) { STACK_UNWIND (frame, op_ret, op_errno); return 0; } static int32_t rot13_writev (call_frame_t *frame, xlator_t *this, dict_t *ctx, struct iovec *vector, int32_t count, off_t offset) { rot13_iovec (vector, count); STACK_WIND (frame, rot13_writev_cbk, FIRST_CHILD (this), FIRST_CHILD (this)->fops->writev, ctx, vector, count, offset); return 0; } \end{verbatim} Every xlator must define two functions and two external symbols. The functions are \texttt{init} and \texttt{fini}, and the symbols are \texttt{fops} and \texttt{mops}. The \texttt{init} function is called when the xlator is loaded by GlusterFS, and contains code for the xlator to initialize itself. Note that if an xlator is present multiple times in the spec tree, the \texttt{init} function will be called each time the xlator is loaded. \begin{verbatim} int32_t init (xlator_t *this) { if (!this->children) { gf_log ("rot13", GF_LOG_ERROR, "FATAL: rot13 should have exactly one child"); return -1; } gf_log ("rot13", GF_LOG_DEBUG, "rot13 xlator loaded"); return 0; } \end{verbatim} \begin{verbatim} void fini (xlator_t *this) { return; } struct xlator_fops fops = { .readv = rot13_readv, .writev = rot13_writev }; \end{verbatim} \end{document}