summaryrefslogtreecommitdiffstats
path: root/contrib/qemu
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/qemu')
-rw-r--r--contrib/qemu/block.c4604
-rw-r--r--contrib/qemu/block/qcow.c914
-rw-r--r--contrib/qemu/block/qcow2-cache.c323
-rw-r--r--contrib/qemu/block/qcow2-cluster.c1478
-rw-r--r--contrib/qemu/block/qcow2-refcount.c1374
-rw-r--r--contrib/qemu/block/qcow2-snapshot.c660
-rw-r--r--contrib/qemu/block/qcow2.c1825
-rw-r--r--contrib/qemu/block/qcow2.h437
-rw-r--r--contrib/qemu/block/qed-check.c248
-rw-r--r--contrib/qemu/block/qed-cluster.c165
-rw-r--r--contrib/qemu/block/qed-gencb.c32
-rw-r--r--contrib/qemu/block/qed-l2-cache.c187
-rw-r--r--contrib/qemu/block/qed-table.c296
-rw-r--r--contrib/qemu/block/qed.c1596
-rw-r--r--contrib/qemu/block/qed.h344
-rw-r--r--contrib/qemu/block/snapshot.c157
-rw-r--r--contrib/qemu/config-host.h74
-rw-r--r--contrib/qemu/include/block/aio.h247
-rw-r--r--contrib/qemu/include/block/block.h443
-rw-r--r--contrib/qemu/include/block/block_int.h421
-rw-r--r--contrib/qemu/include/block/blockjob.h278
-rw-r--r--contrib/qemu/include/block/coroutine.h218
-rw-r--r--contrib/qemu/include/block/coroutine_int.h53
-rw-r--r--contrib/qemu/include/block/snapshot.h53
-rw-r--r--contrib/qemu/include/config.h2
-rw-r--r--contrib/qemu/include/exec/cpu-common.h124
-rw-r--r--contrib/qemu/include/exec/hwaddr.h20
-rw-r--r--contrib/qemu/include/exec/poison.h63
-rw-r--r--contrib/qemu/include/fpu/softfloat.h641
-rw-r--r--contrib/qemu/include/glib-compat.h27
-rw-r--r--contrib/qemu/include/migration/migration.h157
-rw-r--r--contrib/qemu/include/migration/qemu-file.h266
-rw-r--r--contrib/qemu/include/migration/vmstate.h740
-rw-r--r--contrib/qemu/include/monitor/monitor.h104
-rw-r--r--contrib/qemu/include/monitor/readline.h55
-rw-r--r--contrib/qemu/include/qapi/error.h85
-rw-r--r--contrib/qemu/include/qapi/qmp/json-lexer.h51
-rw-r--r--contrib/qemu/include/qapi/qmp/json-parser.h24
-rw-r--r--contrib/qemu/include/qapi/qmp/json-streamer.h40
-rw-r--r--contrib/qemu/include/qapi/qmp/qbool.h29
-rw-r--r--contrib/qemu/include/qapi/qmp/qdict.h69
-rw-r--r--contrib/qemu/include/qapi/qmp/qerror.h249
-rw-r--r--contrib/qemu/include/qapi/qmp/qfloat.h29
-rw-r--r--contrib/qemu/include/qapi/qmp/qint.h28
-rw-r--r--contrib/qemu/include/qapi/qmp/qjson.h29
-rw-r--r--contrib/qemu/include/qapi/qmp/qlist.h63
-rw-r--r--contrib/qemu/include/qapi/qmp/qobject.h112
-rw-r--r--contrib/qemu/include/qapi/qmp/qstring.h36
-rw-r--r--contrib/qemu/include/qapi/qmp/types.h25
-rw-r--r--contrib/qemu/include/qemu-common.h478
-rw-r--r--contrib/qemu/include/qemu/aes.h45
-rw-r--r--contrib/qemu/include/qemu/atomic.h202
-rw-r--r--contrib/qemu/include/qemu/bitmap.h222
-rw-r--r--contrib/qemu/include/qemu/bitops.h276
-rw-r--r--contrib/qemu/include/qemu/bswap.h478
-rw-r--r--contrib/qemu/include/qemu/compiler.h55
-rw-r--r--contrib/qemu/include/qemu/error-report.h46
-rw-r--r--contrib/qemu/include/qemu/event_notifier.h46
-rw-r--r--contrib/qemu/include/qemu/hbitmap.h209
-rw-r--r--contrib/qemu/include/qemu/host-utils.h322
-rw-r--r--contrib/qemu/include/qemu/iov.h115
-rw-r--r--contrib/qemu/include/qemu/main-loop.h311
-rw-r--r--contrib/qemu/include/qemu/module.h40
-rw-r--r--contrib/qemu/include/qemu/notify.h72
-rw-r--r--contrib/qemu/include/qemu/option.h157
-rw-r--r--contrib/qemu/include/qemu/option_int.h54
-rw-r--r--contrib/qemu/include/qemu/osdep.h218
-rw-r--r--contrib/qemu/include/qemu/queue.h414
-rw-r--r--contrib/qemu/include/qemu/sockets.h83
-rw-r--r--contrib/qemu/include/qemu/thread-posix.h28
-rw-r--r--contrib/qemu/include/qemu/thread.h56
-rw-r--r--contrib/qemu/include/qemu/timer.h305
-rw-r--r--contrib/qemu/include/qemu/typedefs.h69
-rw-r--r--contrib/qemu/include/sysemu/os-posix.h52
-rw-r--r--contrib/qemu/include/sysemu/sysemu.h200
-rw-r--r--contrib/qemu/include/trace.h6
-rw-r--r--contrib/qemu/qapi-types.h2746
-rw-r--r--contrib/qemu/qemu-coroutine-lock.c178
-rw-r--r--contrib/qemu/qemu-coroutine-sleep.c39
-rw-r--r--contrib/qemu/qemu-coroutine.c135
-rw-r--r--contrib/qemu/qmp-commands.h204
-rw-r--r--contrib/qemu/qobject/json-lexer.c373
-rw-r--r--contrib/qemu/qobject/json-parser.c724
-rw-r--r--contrib/qemu/qobject/json-streamer.c122
-rw-r--r--contrib/qemu/qobject/qbool.c68
-rw-r--r--contrib/qemu/qobject/qdict.c478
-rw-r--r--contrib/qemu/qobject/qerror.c156
-rw-r--r--contrib/qemu/qobject/qfloat.c68
-rw-r--r--contrib/qemu/qobject/qint.c67
-rw-r--r--contrib/qemu/qobject/qjson.c282
-rw-r--r--contrib/qemu/qobject/qlist.c170
-rw-r--r--contrib/qemu/qobject/qstring.c149
-rw-r--r--contrib/qemu/trace/generated-tracers.h3759
-rw-r--r--contrib/qemu/util/aes.c1314
-rw-r--r--contrib/qemu/util/bitmap.c256
-rw-r--r--contrib/qemu/util/bitops.c158
-rw-r--r--contrib/qemu/util/cutils.c532
-rw-r--r--contrib/qemu/util/error.c120
-rw-r--r--contrib/qemu/util/hbitmap.c402
-rw-r--r--contrib/qemu/util/hexdump.c37
-rw-r--r--contrib/qemu/util/iov.c426
-rw-r--r--contrib/qemu/util/module.c81
-rw-r--r--contrib/qemu/util/oslib-posix.c243
-rw-r--r--contrib/qemu/util/qemu-error.c225
-rw-r--r--contrib/qemu/util/qemu-option.c1126
-rw-r--r--contrib/qemu/util/qemu-thread-posix.c327
-rw-r--r--contrib/qemu/util/unicode.c100
107 files changed, 39119 insertions, 0 deletions
diff --git a/contrib/qemu/block.c b/contrib/qemu/block.c
new file mode 100644
index 00000000000..b56024113b8
--- /dev/null
+++ b/contrib/qemu/block.c
@@ -0,0 +1,4604 @@
+/*
+ * QEMU System Emulator block driver
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#include "config-host.h"
+#include "qemu-common.h"
+#include "trace.h"
+#include "monitor/monitor.h"
+#include "block/block_int.h"
+#include "block/blockjob.h"
+#include "qemu/module.h"
+#include "qapi/qmp/qjson.h"
+#include "sysemu/sysemu.h"
+#include "qemu/notify.h"
+#include "block/coroutine.h"
+#include "qmp-commands.h"
+#include "qemu/timer.h"
+
+#ifdef CONFIG_BSD
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/ioctl.h>
+#include <sys/queue.h>
+#ifndef __DragonFly__
+#include <sys/disk.h>
+#endif
+#endif
+
+#ifdef _WIN32
+#include <windows.h>
+#endif
+
+#define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
+
+typedef enum {
+ BDRV_REQ_COPY_ON_READ = 0x1,
+ BDRV_REQ_ZERO_WRITE = 0x2,
+} BdrvRequestFlags;
+
+static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
+static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
+ int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque);
+static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
+ int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque);
+static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors,
+ QEMUIOVector *iov);
+static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors,
+ QEMUIOVector *iov);
+static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
+ BdrvRequestFlags flags);
+static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
+ BdrvRequestFlags flags);
+static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
+ int64_t sector_num,
+ QEMUIOVector *qiov,
+ int nb_sectors,
+ BlockDriverCompletionFunc *cb,
+ void *opaque,
+ bool is_write);
+static void coroutine_fn bdrv_co_do_rw(void *opaque);
+static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors);
+
+static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
+ bool is_write, double elapsed_time, uint64_t *wait);
+static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
+ double elapsed_time, uint64_t *wait);
+static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
+ bool is_write, int64_t *wait);
+
+static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
+ QTAILQ_HEAD_INITIALIZER(bdrv_states);
+
+static QLIST_HEAD(, BlockDriver) bdrv_drivers =
+ QLIST_HEAD_INITIALIZER(bdrv_drivers);
+
+/* If non-zero, use only whitelisted block drivers */
+static int use_bdrv_whitelist;
+
+#ifdef _WIN32
+static int is_windows_drive_prefix(const char *filename)
+{
+ return (((filename[0] >= 'a' && filename[0] <= 'z') ||
+ (filename[0] >= 'A' && filename[0] <= 'Z')) &&
+ filename[1] == ':');
+}
+
+int is_windows_drive(const char *filename)
+{
+ if (is_windows_drive_prefix(filename) &&
+ filename[2] == '\0')
+ return 1;
+ if (strstart(filename, "\\\\.\\", NULL) ||
+ strstart(filename, "//./", NULL))
+ return 1;
+ return 0;
+}
+#endif
+
+/* throttling disk I/O limits */
+void bdrv_io_limits_disable(BlockDriverState *bs)
+{
+ bs->io_limits_enabled = false;
+
+ while (qemu_co_queue_next(&bs->throttled_reqs));
+
+ if (bs->block_timer) {
+ qemu_del_timer(bs->block_timer);
+ qemu_free_timer(bs->block_timer);
+ bs->block_timer = NULL;
+ }
+
+ bs->slice_start = 0;
+ bs->slice_end = 0;
+}
+
+static void bdrv_block_timer(void *opaque)
+{
+ BlockDriverState *bs = opaque;
+
+ qemu_co_queue_next(&bs->throttled_reqs);
+}
+
+void bdrv_io_limits_enable(BlockDriverState *bs)
+{
+ qemu_co_queue_init(&bs->throttled_reqs);
+ bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
+ bs->io_limits_enabled = true;
+}
+
+bool bdrv_io_limits_enabled(BlockDriverState *bs)
+{
+ BlockIOLimit *io_limits = &bs->io_limits;
+ return io_limits->bps[BLOCK_IO_LIMIT_READ]
+ || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
+ || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
+ || io_limits->iops[BLOCK_IO_LIMIT_READ]
+ || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
+ || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
+}
+
+static void bdrv_io_limits_intercept(BlockDriverState *bs,
+ bool is_write, int nb_sectors)
+{
+ int64_t wait_time = -1;
+
+ if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
+ qemu_co_queue_wait(&bs->throttled_reqs);
+ }
+
+ /* In fact, we hope to keep each request's timing, in FIFO mode. The next
+ * throttled requests will not be dequeued until the current request is
+ * allowed to be serviced. So if the current request still exceeds the
+ * limits, it will be inserted to the head. All requests followed it will
+ * be still in throttled_reqs queue.
+ */
+
+ while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
+ qemu_mod_timer(bs->block_timer,
+ wait_time + qemu_get_clock_ns(vm_clock));
+ qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
+ }
+
+ qemu_co_queue_next(&bs->throttled_reqs);
+}
+
+/* check if the path starts with "<protocol>:" */
+static int path_has_protocol(const char *path)
+{
+ const char *p;
+
+#ifdef _WIN32
+ if (is_windows_drive(path) ||
+ is_windows_drive_prefix(path)) {
+ return 0;
+ }
+ p = path + strcspn(path, ":/\\");
+#else
+ p = path + strcspn(path, ":/");
+#endif
+
+ return *p == ':';
+}
+
+int path_is_absolute(const char *path)
+{
+#ifdef _WIN32
+ /* specific case for names like: "\\.\d:" */
+ if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
+ return 1;
+ }
+ return (*path == '/' || *path == '\\');
+#else
+ return (*path == '/');
+#endif
+}
+
+/* if filename is absolute, just copy it to dest. Otherwise, build a
+ path to it by considering it is relative to base_path. URL are
+ supported. */
+void path_combine(char *dest, int dest_size,
+ const char *base_path,
+ const char *filename)
+{
+ const char *p, *p1;
+ int len;
+
+ if (dest_size <= 0)
+ return;
+ if (path_is_absolute(filename)) {
+ pstrcpy(dest, dest_size, filename);
+ } else {
+ p = strchr(base_path, ':');
+ if (p)
+ p++;
+ else
+ p = base_path;
+ p1 = strrchr(base_path, '/');
+#ifdef _WIN32
+ {
+ const char *p2;
+ p2 = strrchr(base_path, '\\');
+ if (!p1 || p2 > p1)
+ p1 = p2;
+ }
+#endif
+ if (p1)
+ p1++;
+ else
+ p1 = base_path;
+ if (p1 > p)
+ p = p1;
+ len = p - base_path;
+ if (len > dest_size - 1)
+ len = dest_size - 1;
+ memcpy(dest, base_path, len);
+ dest[len] = '\0';
+ pstrcat(dest, dest_size, filename);
+ }
+}
+
+void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
+{
+ if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
+ pstrcpy(dest, sz, bs->backing_file);
+ } else {
+ path_combine(dest, sz, bs->filename, bs->backing_file);
+ }
+}
+
+void bdrv_register(BlockDriver *bdrv)
+{
+ /* Block drivers without coroutine functions need emulation */
+ if (!bdrv->bdrv_co_readv) {
+ bdrv->bdrv_co_readv = bdrv_co_readv_em;
+ bdrv->bdrv_co_writev = bdrv_co_writev_em;
+
+ /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
+ * the block driver lacks aio we need to emulate that too.
+ */
+ if (!bdrv->bdrv_aio_readv) {
+ /* add AIO emulation layer */
+ bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
+ bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
+ }
+ }
+
+ QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
+}
+
+/* create a new block device (by default it is empty) */
+BlockDriverState *bdrv_new(const char *device_name)
+{
+ BlockDriverState *bs;
+
+ bs = g_malloc0(sizeof(BlockDriverState));
+ pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
+ if (device_name[0] != '\0') {
+ QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
+ }
+ bdrv_iostatus_disable(bs);
+ notifier_list_init(&bs->close_notifiers);
+ notifier_with_return_list_init(&bs->before_write_notifiers);
+
+ return bs;
+}
+
+void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
+{
+ notifier_list_add(&bs->close_notifiers, notify);
+}
+
+BlockDriver *bdrv_find_format(const char *format_name)
+{
+ BlockDriver *drv1;
+ QLIST_FOREACH(drv1, &bdrv_drivers, list) {
+ if (!strcmp(drv1->format_name, format_name)) {
+ return drv1;
+ }
+ }
+ return NULL;
+}
+
+static int bdrv_is_whitelisted(BlockDriver *drv, bool read_only)
+{
+ static const char *whitelist_rw[] = {
+ CONFIG_BDRV_RW_WHITELIST
+ };
+ static const char *whitelist_ro[] = {
+ CONFIG_BDRV_RO_WHITELIST
+ };
+ const char **p;
+
+ if (!whitelist_rw[0] && !whitelist_ro[0]) {
+ return 1; /* no whitelist, anything goes */
+ }
+
+ for (p = whitelist_rw; *p; p++) {
+ if (!strcmp(drv->format_name, *p)) {
+ return 1;
+ }
+ }
+ if (read_only) {
+ for (p = whitelist_ro; *p; p++) {
+ if (!strcmp(drv->format_name, *p)) {
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+BlockDriver *bdrv_find_whitelisted_format(const char *format_name,
+ bool read_only)
+{
+ BlockDriver *drv = bdrv_find_format(format_name);
+ return drv && bdrv_is_whitelisted(drv, read_only) ? drv : NULL;
+}
+
+typedef struct CreateCo {
+ BlockDriver *drv;
+ char *filename;
+ QEMUOptionParameter *options;
+ int ret;
+} CreateCo;
+
+static void coroutine_fn bdrv_create_co_entry(void *opaque)
+{
+ CreateCo *cco = opaque;
+ assert(cco->drv);
+
+ cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
+}
+
+int bdrv_create(BlockDriver *drv, const char* filename,
+ QEMUOptionParameter *options)
+{
+ int ret;
+
+ Coroutine *co;
+ CreateCo cco = {
+ .drv = drv,
+ .filename = g_strdup(filename),
+ .options = options,
+ .ret = NOT_DONE,
+ };
+
+ if (!drv->bdrv_create) {
+ ret = -ENOTSUP;
+ goto out;
+ }
+
+ if (qemu_in_coroutine()) {
+ /* Fast-path if already in coroutine context */
+ bdrv_create_co_entry(&cco);
+ } else {
+ co = qemu_coroutine_create(bdrv_create_co_entry);
+ qemu_coroutine_enter(co, &cco);
+ while (cco.ret == NOT_DONE) {
+ qemu_aio_wait();
+ }
+ }
+
+ ret = cco.ret;
+
+out:
+ g_free(cco.filename);
+ return ret;
+}
+
+int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
+{
+ BlockDriver *drv;
+
+ drv = bdrv_find_protocol(filename, true);
+ if (drv == NULL) {
+ return -ENOENT;
+ }
+
+ return bdrv_create(drv, filename, options);
+}
+
+/*
+ * Create a uniquely-named empty temporary file.
+ * Return 0 upon success, otherwise a negative errno value.
+ */
+int get_tmp_filename(char *filename, int size)
+{
+#ifdef _WIN32
+ char temp_dir[MAX_PATH];
+ /* GetTempFileName requires that its output buffer (4th param)
+ have length MAX_PATH or greater. */
+ assert(size >= MAX_PATH);
+ return (GetTempPath(MAX_PATH, temp_dir)
+ && GetTempFileName(temp_dir, "qem", 0, filename)
+ ? 0 : -GetLastError());
+#else
+ int fd;
+ const char *tmpdir;
+ tmpdir = getenv("TMPDIR");
+ if (!tmpdir)
+ tmpdir = "/tmp";
+ if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
+ return -EOVERFLOW;
+ }
+ fd = mkstemp(filename);
+ if (fd < 0) {
+ return -errno;
+ }
+ if (close(fd) != 0) {
+ unlink(filename);
+ return -errno;
+ }
+ return 0;
+#endif
+}
+
+/*
+ * Detect host devices. By convention, /dev/cdrom[N] is always
+ * recognized as a host CDROM.
+ */
+static BlockDriver *find_hdev_driver(const char *filename)
+{
+ int score_max = 0, score;
+ BlockDriver *drv = NULL, *d;
+
+ QLIST_FOREACH(d, &bdrv_drivers, list) {
+ if (d->bdrv_probe_device) {
+ score = d->bdrv_probe_device(filename);
+ if (score > score_max) {
+ score_max = score;
+ drv = d;
+ }
+ }
+ }
+
+ return drv;
+}
+
+BlockDriver *bdrv_find_protocol(const char *filename,
+ bool allow_protocol_prefix)
+{
+ BlockDriver *drv1;
+ char protocol[128];
+ int len;
+ const char *p;
+
+ /* TODO Drivers without bdrv_file_open must be specified explicitly */
+
+ /*
+ * XXX(hch): we really should not let host device detection
+ * override an explicit protocol specification, but moving this
+ * later breaks access to device names with colons in them.
+ * Thanks to the brain-dead persistent naming schemes on udev-
+ * based Linux systems those actually are quite common.
+ */
+ drv1 = find_hdev_driver(filename);
+ if (drv1) {
+ return drv1;
+ }
+
+ if (!path_has_protocol(filename) || !allow_protocol_prefix) {
+ return bdrv_find_format("file");
+ }
+
+ p = strchr(filename, ':');
+ assert(p != NULL);
+ len = p - filename;
+ if (len > sizeof(protocol) - 1)
+ len = sizeof(protocol) - 1;
+ memcpy(protocol, filename, len);
+ protocol[len] = '\0';
+ QLIST_FOREACH(drv1, &bdrv_drivers, list) {
+ if (drv1->protocol_name &&
+ !strcmp(drv1->protocol_name, protocol)) {
+ return drv1;
+ }
+ }
+ return NULL;
+}
+
+static int find_image_format(BlockDriverState *bs, const char *filename,
+ BlockDriver **pdrv)
+{
+ int score, score_max;
+ BlockDriver *drv1, *drv;
+ uint8_t buf[2048];
+ int ret = 0;
+
+ /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
+ if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) {
+ drv = bdrv_find_format("raw");
+ if (!drv) {
+ ret = -ENOENT;
+ }
+ *pdrv = drv;
+ return ret;
+ }
+
+ ret = bdrv_pread(bs, 0, buf, sizeof(buf));
+ if (ret < 0) {
+ *pdrv = NULL;
+ return ret;
+ }
+
+ score_max = 0;
+ drv = NULL;
+ QLIST_FOREACH(drv1, &bdrv_drivers, list) {
+ if (drv1->bdrv_probe) {
+ score = drv1->bdrv_probe(buf, ret, filename);
+ if (score > score_max) {
+ score_max = score;
+ drv = drv1;
+ }
+ }
+ }
+ if (!drv) {
+ ret = -ENOENT;
+ }
+ *pdrv = drv;
+ return ret;
+}
+
+/**
+ * Set the current 'total_sectors' value
+ */
+static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
+{
+ BlockDriver *drv = bs->drv;
+
+ /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
+ if (bs->sg)
+ return 0;
+
+ /* query actual device if possible, otherwise just trust the hint */
+ if (drv->bdrv_getlength) {
+ int64_t length = drv->bdrv_getlength(bs);
+ if (length < 0) {
+ return length;
+ }
+ hint = length >> BDRV_SECTOR_BITS;
+ }
+
+ bs->total_sectors = hint;
+ return 0;
+}
+
+/**
+ * Set open flags for a given discard mode
+ *
+ * Return 0 on success, -1 if the discard mode was invalid.
+ */
+int bdrv_parse_discard_flags(const char *mode, int *flags)
+{
+ *flags &= ~BDRV_O_UNMAP;
+
+ if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) {
+ /* do nothing */
+ } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) {
+ *flags |= BDRV_O_UNMAP;
+ } else {
+ return -1;
+ }
+
+ return 0;
+}
+
+/**
+ * Set open flags for a given cache mode
+ *
+ * Return 0 on success, -1 if the cache mode was invalid.
+ */
+int bdrv_parse_cache_flags(const char *mode, int *flags)
+{
+ *flags &= ~BDRV_O_CACHE_MASK;
+
+ if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
+ *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
+ } else if (!strcmp(mode, "directsync")) {
+ *flags |= BDRV_O_NOCACHE;
+ } else if (!strcmp(mode, "writeback")) {
+ *flags |= BDRV_O_CACHE_WB;
+ } else if (!strcmp(mode, "unsafe")) {
+ *flags |= BDRV_O_CACHE_WB;
+ *flags |= BDRV_O_NO_FLUSH;
+ } else if (!strcmp(mode, "writethrough")) {
+ /* this is the default */
+ } else {
+ return -1;
+ }
+
+ return 0;
+}
+
+/**
+ * The copy-on-read flag is actually a reference count so multiple users may
+ * use the feature without worrying about clobbering its previous state.
+ * Copy-on-read stays enabled until all users have called to disable it.
+ */
+void bdrv_enable_copy_on_read(BlockDriverState *bs)
+{
+ bs->copy_on_read++;
+}
+
+void bdrv_disable_copy_on_read(BlockDriverState *bs)
+{
+ assert(bs->copy_on_read > 0);
+ bs->copy_on_read--;
+}
+
+static int bdrv_open_flags(BlockDriverState *bs, int flags)
+{
+ int open_flags = flags | BDRV_O_CACHE_WB;
+
+ /*
+ * Clear flags that are internal to the block layer before opening the
+ * image.
+ */
+ open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
+
+ /*
+ * Snapshots should be writable.
+ */
+ if (bs->is_temporary) {
+ open_flags |= BDRV_O_RDWR;
+ }
+
+ return open_flags;
+}
+
+/*
+ * Common part for opening disk images and files
+ *
+ * Removes all processed options from *options.
+ */
+static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file,
+ QDict *options, int flags, BlockDriver *drv)
+{
+ int ret, open_flags;
+ const char *filename;
+
+ assert(drv != NULL);
+ assert(bs->file == NULL);
+ assert(options != NULL && bs->options != options);
+
+ if (file != NULL) {
+ filename = file->filename;
+ } else {
+ filename = qdict_get_try_str(options, "filename");
+ }
+
+ trace_bdrv_open_common(bs, filename ?: "", flags, drv->format_name);
+
+ /* bdrv_open() with directly using a protocol as drv. This layer is already
+ * opened, so assign it to bs (while file becomes a closed BlockDriverState)
+ * and return immediately. */
+ if (file != NULL && drv->bdrv_file_open) {
+ bdrv_swap(file, bs);
+ return 0;
+ }
+
+ bs->open_flags = flags;
+ bs->buffer_alignment = 512;
+ open_flags = bdrv_open_flags(bs, flags);
+ bs->read_only = !(open_flags & BDRV_O_RDWR);
+
+ if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv, bs->read_only)) {
+ return -ENOTSUP;
+ }
+
+ assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
+ if (!bs->read_only && (flags & BDRV_O_COPY_ON_READ)) {
+ bdrv_enable_copy_on_read(bs);
+ }
+
+ if (filename != NULL) {
+ pstrcpy(bs->filename, sizeof(bs->filename), filename);
+ } else {
+ bs->filename[0] = '\0';
+ }
+
+ bs->drv = drv;
+ bs->opaque = g_malloc0(drv->instance_size);
+
+ bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
+
+ /* Open the image, either directly or using a protocol */
+ if (drv->bdrv_file_open) {
+ assert(file == NULL);
+ assert(drv->bdrv_parse_filename || filename != NULL);
+ ret = drv->bdrv_file_open(bs, options, open_flags);
+ } else {
+ if (file == NULL) {
+ qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't use '%s' as a "
+ "block driver for the protocol level",
+ drv->format_name);
+ ret = -EINVAL;
+ goto free_and_fail;
+ }
+ assert(file != NULL);
+ bs->file = file;
+ ret = drv->bdrv_open(bs, options, open_flags);
+ }
+
+ if (ret < 0) {
+ goto free_and_fail;
+ }
+
+ ret = refresh_total_sectors(bs, bs->total_sectors);
+ if (ret < 0) {
+ goto free_and_fail;
+ }
+
+#ifndef _WIN32
+ if (bs->is_temporary) {
+ assert(filename != NULL);
+ unlink(filename);
+ }
+#endif
+ return 0;
+
+free_and_fail:
+ bs->file = NULL;
+ g_free(bs->opaque);
+ bs->opaque = NULL;
+ bs->drv = NULL;
+ return ret;
+}
+
+/*
+ * Opens a file using a protocol (file, host_device, nbd, ...)
+ *
+ * options is a QDict of options to pass to the block drivers, or NULL for an
+ * empty set of options. The reference to the QDict belongs to the block layer
+ * after the call (even on failure), so if the caller intends to reuse the
+ * dictionary, it needs to use QINCREF() before calling bdrv_file_open.
+ */
+int bdrv_file_open(BlockDriverState **pbs, const char *filename,
+ QDict *options, int flags)
+{
+ BlockDriverState *bs;
+ BlockDriver *drv;
+ const char *drvname;
+ bool allow_protocol_prefix = false;
+ int ret;
+
+ /* NULL means an empty set of options */
+ if (options == NULL) {
+ options = qdict_new();
+ }
+
+ bs = bdrv_new("");
+ bs->options = options;
+ options = qdict_clone_shallow(options);
+
+ /* Fetch the file name from the options QDict if necessary */
+ if (!filename) {
+ filename = qdict_get_try_str(options, "filename");
+ } else if (filename && !qdict_haskey(options, "filename")) {
+ qdict_put(options, "filename", qstring_from_str(filename));
+ allow_protocol_prefix = true;
+ } else {
+ qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't specify 'file' and "
+ "'filename' options at the same time");
+ ret = -EINVAL;
+ goto fail;
+ }
+
+ /* Find the right block driver */
+ drvname = qdict_get_try_str(options, "driver");
+ if (drvname) {
+ drv = bdrv_find_whitelisted_format(drvname, !(flags & BDRV_O_RDWR));
+ qdict_del(options, "driver");
+ } else if (filename) {
+ drv = bdrv_find_protocol(filename, allow_protocol_prefix);
+ if (!drv) {
+ qerror_report(ERROR_CLASS_GENERIC_ERROR, "Unknown protocol");
+ }
+ } else {
+ qerror_report(ERROR_CLASS_GENERIC_ERROR,
+ "Must specify either driver or file");
+ drv = NULL;
+ }
+
+ if (!drv) {
+ ret = -ENOENT;
+ goto fail;
+ }
+
+ /* Parse the filename and open it */
+ if (drv->bdrv_parse_filename && filename) {
+ Error *local_err = NULL;
+ drv->bdrv_parse_filename(filename, options, &local_err);
+ if (error_is_set(&local_err)) {
+ qerror_report_err(local_err);
+ error_free(local_err);
+ ret = -EINVAL;
+ goto fail;
+ }
+ qdict_del(options, "filename");
+ } else if (!drv->bdrv_parse_filename && !filename) {
+ qerror_report(ERROR_CLASS_GENERIC_ERROR,
+ "The '%s' block driver requires a file name",
+ drv->format_name);
+ ret = -EINVAL;
+ goto fail;
+ }
+
+ ret = bdrv_open_common(bs, NULL, options, flags, drv);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /* Check if any unknown options were used */
+ if (qdict_size(options) != 0) {
+ const QDictEntry *entry = qdict_first(options);
+ qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block protocol '%s' doesn't "
+ "support the option '%s'",
+ drv->format_name, entry->key);
+ ret = -EINVAL;
+ goto fail;
+ }
+ QDECREF(options);
+
+ bs->growable = 1;
+ *pbs = bs;
+ return 0;
+
+fail:
+ QDECREF(options);
+ if (!bs->drv) {
+ QDECREF(bs->options);
+ }
+ bdrv_delete(bs);
+ return ret;
+}
+
+/*
+ * Opens the backing file for a BlockDriverState if not yet open
+ *
+ * options is a QDict of options to pass to the block drivers, or NULL for an
+ * empty set of options. The reference to the QDict is transferred to this
+ * function (even on failure), so if the caller intends to reuse the dictionary,
+ * it needs to use QINCREF() before calling bdrv_file_open.
+ */
+int bdrv_open_backing_file(BlockDriverState *bs, QDict *options)
+{
+ char backing_filename[PATH_MAX];
+ int back_flags, ret;
+ BlockDriver *back_drv = NULL;
+
+ if (bs->backing_hd != NULL) {
+ QDECREF(options);
+ return 0;
+ }
+
+ /* NULL means an empty set of options */
+ if (options == NULL) {
+ options = qdict_new();
+ }
+
+ bs->open_flags &= ~BDRV_O_NO_BACKING;
+ if (qdict_haskey(options, "file.filename")) {
+ backing_filename[0] = '\0';
+ } else if (bs->backing_file[0] == '\0' && qdict_size(options) == 0) {
+ QDECREF(options);
+ return 0;
+ }
+
+ bs->backing_hd = bdrv_new("");
+ bdrv_get_full_backing_filename(bs, backing_filename,
+ sizeof(backing_filename));
+
+ if (bs->backing_format[0] != '\0') {
+ back_drv = bdrv_find_format(bs->backing_format);
+ }
+
+ /* backing files always opened read-only */
+ back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
+
+ ret = bdrv_open(bs->backing_hd,
+ *backing_filename ? backing_filename : NULL, options,
+ back_flags, back_drv);
+ if (ret < 0) {
+ bdrv_delete(bs->backing_hd);
+ bs->backing_hd = NULL;
+ bs->open_flags |= BDRV_O_NO_BACKING;
+ return ret;
+ }
+ return 0;
+}
+
+static void extract_subqdict(QDict *src, QDict **dst, const char *start)
+{
+ const QDictEntry *entry, *next;
+ const char *p;
+
+ *dst = qdict_new();
+ entry = qdict_first(src);
+
+ while (entry != NULL) {
+ next = qdict_next(src, entry);
+ if (strstart(entry->key, start, &p)) {
+ qobject_incref(entry->value);
+ qdict_put_obj(*dst, p, entry->value);
+ qdict_del(src, entry->key);
+ }
+ entry = next;
+ }
+}
+
+/*
+ * Opens a disk image (raw, qcow2, vmdk, ...)
+ *
+ * options is a QDict of options to pass to the block drivers, or NULL for an
+ * empty set of options. The reference to the QDict belongs to the block layer
+ * after the call (even on failure), so if the caller intends to reuse the
+ * dictionary, it needs to use QINCREF() before calling bdrv_open.
+ */
+int bdrv_open(BlockDriverState *bs, const char *filename, QDict *options,
+ int flags, BlockDriver *drv)
+{
+ int ret;
+ /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */
+ char tmp_filename[PATH_MAX + 1];
+ BlockDriverState *file = NULL;
+ QDict *file_options = NULL;
+
+ /* NULL means an empty set of options */
+ if (options == NULL) {
+ options = qdict_new();
+ }
+
+ bs->options = options;
+ options = qdict_clone_shallow(options);
+
+ /* For snapshot=on, create a temporary qcow2 overlay */
+ if (flags & BDRV_O_SNAPSHOT) {
+ BlockDriverState *bs1;
+ int64_t total_size;
+ BlockDriver *bdrv_qcow2;
+ QEMUOptionParameter *create_options;
+ char backing_filename[PATH_MAX];
+
+ if (qdict_size(options) != 0) {
+ error_report("Can't use snapshot=on with driver-specific options");
+ ret = -EINVAL;
+ goto fail;
+ }
+ assert(filename != NULL);
+
+ /* if snapshot, we create a temporary backing file and open it
+ instead of opening 'filename' directly */
+
+ /* if there is a backing file, use it */
+ bs1 = bdrv_new("");
+ ret = bdrv_open(bs1, filename, NULL, 0, drv);
+ if (ret < 0) {
+ bdrv_delete(bs1);
+ goto fail;
+ }
+ total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
+
+ bdrv_delete(bs1);
+
+ ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /* Real path is meaningless for protocols */
+ if (path_has_protocol(filename)) {
+ snprintf(backing_filename, sizeof(backing_filename),
+ "%s", filename);
+ } else if (!realpath(filename, backing_filename)) {
+ ret = -errno;
+ goto fail;
+ }
+
+ bdrv_qcow2 = bdrv_find_format("qcow2");
+ create_options = parse_option_parameters("", bdrv_qcow2->create_options,
+ NULL);
+
+ set_option_parameter_int(create_options, BLOCK_OPT_SIZE, total_size);
+ set_option_parameter(create_options, BLOCK_OPT_BACKING_FILE,
+ backing_filename);
+ if (drv) {
+ set_option_parameter(create_options, BLOCK_OPT_BACKING_FMT,
+ drv->format_name);
+ }
+
+ ret = bdrv_create(bdrv_qcow2, tmp_filename, create_options);
+ free_option_parameters(create_options);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ filename = tmp_filename;
+ drv = bdrv_qcow2;
+ bs->is_temporary = 1;
+ }
+
+ /* Open image file without format layer */
+ if (flags & BDRV_O_RDWR) {
+ flags |= BDRV_O_ALLOW_RDWR;
+ }
+
+ extract_subqdict(options, &file_options, "file.");
+
+ ret = bdrv_file_open(&file, filename, file_options,
+ bdrv_open_flags(bs, flags | BDRV_O_UNMAP));
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /* Find the right image format driver */
+ if (!drv) {
+ ret = find_image_format(file, filename, &drv);
+ }
+
+ if (!drv) {
+ goto unlink_and_fail;
+ }
+
+ /* Open the image */
+ ret = bdrv_open_common(bs, file, options, flags, drv);
+ if (ret < 0) {
+ goto unlink_and_fail;
+ }
+
+ if (bs->file != file) {
+ bdrv_delete(file);
+ file = NULL;
+ }
+
+ /* If there is a backing file, use it */
+ if ((flags & BDRV_O_NO_BACKING) == 0) {
+ QDict *backing_options;
+
+ extract_subqdict(options, &backing_options, "backing.");
+ ret = bdrv_open_backing_file(bs, backing_options);
+ if (ret < 0) {
+ goto close_and_fail;
+ }
+ }
+
+ /* Check if any unknown options were used */
+ if (qdict_size(options) != 0) {
+ const QDictEntry *entry = qdict_first(options);
+ qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block format '%s' used by "
+ "device '%s' doesn't support the option '%s'",
+ drv->format_name, bs->device_name, entry->key);
+
+ ret = -EINVAL;
+ goto close_and_fail;
+ }
+ QDECREF(options);
+
+ if (!bdrv_key_required(bs)) {
+ bdrv_dev_change_media_cb(bs, true);
+ }
+
+ /* throttling disk I/O limits */
+ if (bs->io_limits_enabled) {
+ bdrv_io_limits_enable(bs);
+ }
+
+ return 0;
+
+unlink_and_fail:
+ if (file != NULL) {
+ bdrv_delete(file);
+ }
+ if (bs->is_temporary) {
+ unlink(filename);
+ }
+fail:
+ QDECREF(bs->options);
+ QDECREF(options);
+ bs->options = NULL;
+ return ret;
+
+close_and_fail:
+ bdrv_close(bs);
+ QDECREF(options);
+ return ret;
+}
+
+typedef struct BlockReopenQueueEntry {
+ bool prepared;
+ BDRVReopenState state;
+ QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
+} BlockReopenQueueEntry;
+
+/*
+ * Adds a BlockDriverState to a simple queue for an atomic, transactional
+ * reopen of multiple devices.
+ *
+ * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
+ * already performed, or alternatively may be NULL a new BlockReopenQueue will
+ * be created and initialized. This newly created BlockReopenQueue should be
+ * passed back in for subsequent calls that are intended to be of the same
+ * atomic 'set'.
+ *
+ * bs is the BlockDriverState to add to the reopen queue.
+ *
+ * flags contains the open flags for the associated bs
+ *
+ * returns a pointer to bs_queue, which is either the newly allocated
+ * bs_queue, or the existing bs_queue being used.
+ *
+ */
+BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
+ BlockDriverState *bs, int flags)
+{
+ assert(bs != NULL);
+
+ BlockReopenQueueEntry *bs_entry;
+ if (bs_queue == NULL) {
+ bs_queue = g_new0(BlockReopenQueue, 1);
+ QSIMPLEQ_INIT(bs_queue);
+ }
+
+ if (bs->file) {
+ bdrv_reopen_queue(bs_queue, bs->file, flags);
+ }
+
+ bs_entry = g_new0(BlockReopenQueueEntry, 1);
+ QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
+
+ bs_entry->state.bs = bs;
+ bs_entry->state.flags = flags;
+
+ return bs_queue;
+}
+
+/*
+ * Reopen multiple BlockDriverStates atomically & transactionally.
+ *
+ * The queue passed in (bs_queue) must have been built up previous
+ * via bdrv_reopen_queue().
+ *
+ * Reopens all BDS specified in the queue, with the appropriate
+ * flags. All devices are prepared for reopen, and failure of any
+ * device will cause all device changes to be abandonded, and intermediate
+ * data cleaned up.
+ *
+ * If all devices prepare successfully, then the changes are committed
+ * to all devices.
+ *
+ */
+int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
+{
+ int ret = -1;
+ BlockReopenQueueEntry *bs_entry, *next;
+ Error *local_err = NULL;
+
+ assert(bs_queue != NULL);
+
+ bdrv_drain_all();
+
+ QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
+ if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
+ error_propagate(errp, local_err);
+ goto cleanup;
+ }
+ bs_entry->prepared = true;
+ }
+
+ /* If we reach this point, we have success and just need to apply the
+ * changes
+ */
+ QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
+ bdrv_reopen_commit(&bs_entry->state);
+ }
+
+ ret = 0;
+
+cleanup:
+ QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
+ if (ret && bs_entry->prepared) {
+ bdrv_reopen_abort(&bs_entry->state);
+ }
+ g_free(bs_entry);
+ }
+ g_free(bs_queue);
+ return ret;
+}
+
+
+/* Reopen a single BlockDriverState with the specified flags. */
+int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
+{
+ int ret = -1;
+ Error *local_err = NULL;
+ BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
+
+ ret = bdrv_reopen_multiple(queue, &local_err);
+ if (local_err != NULL) {
+ error_propagate(errp, local_err);
+ }
+ return ret;
+}
+
+
+/*
+ * Prepares a BlockDriverState for reopen. All changes are staged in the
+ * 'opaque' field of the BDRVReopenState, which is used and allocated by
+ * the block driver layer .bdrv_reopen_prepare()
+ *
+ * bs is the BlockDriverState to reopen
+ * flags are the new open flags
+ * queue is the reopen queue
+ *
+ * Returns 0 on success, non-zero on error. On error errp will be set
+ * as well.
+ *
+ * On failure, bdrv_reopen_abort() will be called to clean up any data.
+ * It is the responsibility of the caller to then call the abort() or
+ * commit() for any other BDS that have been left in a prepare() state
+ *
+ */
+int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
+ Error **errp)
+{
+ int ret = -1;
+ Error *local_err = NULL;
+ BlockDriver *drv;
+
+ assert(reopen_state != NULL);
+ assert(reopen_state->bs->drv != NULL);
+ drv = reopen_state->bs->drv;
+
+ /* if we are to stay read-only, do not allow permission change
+ * to r/w */
+ if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
+ reopen_state->flags & BDRV_O_RDWR) {
+ error_set(errp, QERR_DEVICE_IS_READ_ONLY,
+ reopen_state->bs->device_name);
+ goto error;
+ }
+
+
+ ret = bdrv_flush(reopen_state->bs);
+ if (ret) {
+ error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
+ strerror(-ret));
+ goto error;
+ }
+
+ if (drv->bdrv_reopen_prepare) {
+ ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
+ if (ret) {
+ if (local_err != NULL) {
+ error_propagate(errp, local_err);
+ } else {
+ error_setg(errp, "failed while preparing to reopen image '%s'",
+ reopen_state->bs->filename);
+ }
+ goto error;
+ }
+ } else {
+ /* It is currently mandatory to have a bdrv_reopen_prepare()
+ * handler for each supported drv. */
+ error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
+ drv->format_name, reopen_state->bs->device_name,
+ "reopening of file");
+ ret = -1;
+ goto error;
+ }
+
+ ret = 0;
+
+error:
+ return ret;
+}
+
+/*
+ * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
+ * makes them final by swapping the staging BlockDriverState contents into
+ * the active BlockDriverState contents.
+ */
+void bdrv_reopen_commit(BDRVReopenState *reopen_state)
+{
+ BlockDriver *drv;
+
+ assert(reopen_state != NULL);
+ drv = reopen_state->bs->drv;
+ assert(drv != NULL);
+
+ /* If there are any driver level actions to take */
+ if (drv->bdrv_reopen_commit) {
+ drv->bdrv_reopen_commit(reopen_state);
+ }
+
+ /* set BDS specific flags now */
+ reopen_state->bs->open_flags = reopen_state->flags;
+ reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
+ BDRV_O_CACHE_WB);
+ reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
+}
+
+/*
+ * Abort the reopen, and delete and free the staged changes in
+ * reopen_state
+ */
+void bdrv_reopen_abort(BDRVReopenState *reopen_state)
+{
+ BlockDriver *drv;
+
+ assert(reopen_state != NULL);
+ drv = reopen_state->bs->drv;
+ assert(drv != NULL);
+
+ if (drv->bdrv_reopen_abort) {
+ drv->bdrv_reopen_abort(reopen_state);
+ }
+}
+
+
+void bdrv_close(BlockDriverState *bs)
+{
+ if (bs->job) {
+ block_job_cancel_sync(bs->job);
+ }
+ bdrv_drain_all(); /* complete I/O */
+ bdrv_flush(bs);
+ bdrv_drain_all(); /* in case flush left pending I/O */
+ notifier_list_notify(&bs->close_notifiers, bs);
+
+ if (bs->drv) {
+ if (bs->backing_hd) {
+ bdrv_delete(bs->backing_hd);
+ bs->backing_hd = NULL;
+ }
+ bs->drv->bdrv_close(bs);
+ g_free(bs->opaque);
+#ifdef _WIN32
+ if (bs->is_temporary) {
+ unlink(bs->filename);
+ }
+#endif
+ bs->opaque = NULL;
+ bs->drv = NULL;
+ bs->copy_on_read = 0;
+ bs->backing_file[0] = '\0';
+ bs->backing_format[0] = '\0';
+ bs->total_sectors = 0;
+ bs->encrypted = 0;
+ bs->valid_key = 0;
+ bs->sg = 0;
+ bs->growable = 0;
+ QDECREF(bs->options);
+ bs->options = NULL;
+
+ if (bs->file != NULL) {
+ bdrv_delete(bs->file);
+ bs->file = NULL;
+ }
+ }
+
+ bdrv_dev_change_media_cb(bs, false);
+
+ /*throttling disk I/O limits*/
+ if (bs->io_limits_enabled) {
+ bdrv_io_limits_disable(bs);
+ }
+}
+
+void bdrv_close_all(void)
+{
+ BlockDriverState *bs;
+
+ QTAILQ_FOREACH(bs, &bdrv_states, list) {
+ bdrv_close(bs);
+ }
+}
+
+/*
+ * Wait for pending requests to complete across all BlockDriverStates
+ *
+ * This function does not flush data to disk, use bdrv_flush_all() for that
+ * after calling this function.
+ *
+ * Note that completion of an asynchronous I/O operation can trigger any
+ * number of other I/O operations on other devices---for example a coroutine
+ * can be arbitrarily complex and a constant flow of I/O can come until the
+ * coroutine is complete. Because of this, it is not possible to have a
+ * function to drain a single device's I/O queue.
+ */
+void bdrv_drain_all(void)
+{
+ BlockDriverState *bs;
+ bool busy;
+
+ do {
+ busy = qemu_aio_wait();
+
+ /* FIXME: We do not have timer support here, so this is effectively
+ * a busy wait.
+ */
+ QTAILQ_FOREACH(bs, &bdrv_states, list) {
+ if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
+ qemu_co_queue_restart_all(&bs->throttled_reqs);
+ busy = true;
+ }
+ }
+ } while (busy);
+
+ /* If requests are still pending there is a bug somewhere */
+ QTAILQ_FOREACH(bs, &bdrv_states, list) {
+ assert(QLIST_EMPTY(&bs->tracked_requests));
+ assert(qemu_co_queue_empty(&bs->throttled_reqs));
+ }
+}
+
+/* make a BlockDriverState anonymous by removing from bdrv_state list.
+ Also, NULL terminate the device_name to prevent double remove */
+void bdrv_make_anon(BlockDriverState *bs)
+{
+ if (bs->device_name[0] != '\0') {
+ QTAILQ_REMOVE(&bdrv_states, bs, list);
+ }
+ bs->device_name[0] = '\0';
+}
+
+static void bdrv_rebind(BlockDriverState *bs)
+{
+ if (bs->drv && bs->drv->bdrv_rebind) {
+ bs->drv->bdrv_rebind(bs);
+ }
+}
+
+static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
+ BlockDriverState *bs_src)
+{
+ /* move some fields that need to stay attached to the device */
+ bs_dest->open_flags = bs_src->open_flags;
+
+ /* dev info */
+ bs_dest->dev_ops = bs_src->dev_ops;
+ bs_dest->dev_opaque = bs_src->dev_opaque;
+ bs_dest->dev = bs_src->dev;
+ bs_dest->buffer_alignment = bs_src->buffer_alignment;
+ bs_dest->copy_on_read = bs_src->copy_on_read;
+
+ bs_dest->enable_write_cache = bs_src->enable_write_cache;
+
+ /* i/o timing parameters */
+ bs_dest->slice_start = bs_src->slice_start;
+ bs_dest->slice_end = bs_src->slice_end;
+ bs_dest->slice_submitted = bs_src->slice_submitted;
+ bs_dest->io_limits = bs_src->io_limits;
+ bs_dest->throttled_reqs = bs_src->throttled_reqs;
+ bs_dest->block_timer = bs_src->block_timer;
+ bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
+
+ /* r/w error */
+ bs_dest->on_read_error = bs_src->on_read_error;
+ bs_dest->on_write_error = bs_src->on_write_error;
+
+ /* i/o status */
+ bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
+ bs_dest->iostatus = bs_src->iostatus;
+
+ /* dirty bitmap */
+ bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
+
+ /* job */
+ bs_dest->in_use = bs_src->in_use;
+ bs_dest->job = bs_src->job;
+
+ /* keep the same entry in bdrv_states */
+ pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
+ bs_src->device_name);
+ bs_dest->list = bs_src->list;
+}
+
+/*
+ * Swap bs contents for two image chains while they are live,
+ * while keeping required fields on the BlockDriverState that is
+ * actually attached to a device.
+ *
+ * This will modify the BlockDriverState fields, and swap contents
+ * between bs_new and bs_old. Both bs_new and bs_old are modified.
+ *
+ * bs_new is required to be anonymous.
+ *
+ * This function does not create any image files.
+ */
+void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
+{
+ BlockDriverState tmp;
+
+ /* bs_new must be anonymous and shouldn't have anything fancy enabled */
+ assert(bs_new->device_name[0] == '\0');
+ assert(bs_new->dirty_bitmap == NULL);
+ assert(bs_new->job == NULL);
+ assert(bs_new->dev == NULL);
+ assert(bs_new->in_use == 0);
+ assert(bs_new->io_limits_enabled == false);
+ assert(bs_new->block_timer == NULL);
+
+ tmp = *bs_new;
+ *bs_new = *bs_old;
+ *bs_old = tmp;
+
+ /* there are some fields that should not be swapped, move them back */
+ bdrv_move_feature_fields(&tmp, bs_old);
+ bdrv_move_feature_fields(bs_old, bs_new);
+ bdrv_move_feature_fields(bs_new, &tmp);
+
+ /* bs_new shouldn't be in bdrv_states even after the swap! */
+ assert(bs_new->device_name[0] == '\0');
+
+ /* Check a few fields that should remain attached to the device */
+ assert(bs_new->dev == NULL);
+ assert(bs_new->job == NULL);
+ assert(bs_new->in_use == 0);
+ assert(bs_new->io_limits_enabled == false);
+ assert(bs_new->block_timer == NULL);
+
+ bdrv_rebind(bs_new);
+ bdrv_rebind(bs_old);
+}
+
+/*
+ * Add new bs contents at the top of an image chain while the chain is
+ * live, while keeping required fields on the top layer.
+ *
+ * This will modify the BlockDriverState fields, and swap contents
+ * between bs_new and bs_top. Both bs_new and bs_top are modified.
+ *
+ * bs_new is required to be anonymous.
+ *
+ * This function does not create any image files.
+ */
+void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
+{
+ bdrv_swap(bs_new, bs_top);
+
+ /* The contents of 'tmp' will become bs_top, as we are
+ * swapping bs_new and bs_top contents. */
+ bs_top->backing_hd = bs_new;
+ bs_top->open_flags &= ~BDRV_O_NO_BACKING;
+ pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
+ bs_new->filename);
+ pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
+ bs_new->drv ? bs_new->drv->format_name : "");
+}
+
+void bdrv_delete(BlockDriverState *bs)
+{
+ assert(!bs->dev);
+ assert(!bs->job);
+ assert(!bs->in_use);
+
+ /* remove from list, if necessary */
+ bdrv_make_anon(bs);
+
+ bdrv_close(bs);
+
+ g_free(bs);
+}
+
+int bdrv_attach_dev(BlockDriverState *bs, void *dev)
+/* TODO change to DeviceState *dev when all users are qdevified */
+{
+ if (bs->dev) {
+ return -EBUSY;
+ }
+ bs->dev = dev;
+ bdrv_iostatus_reset(bs);
+ return 0;
+}
+
+/* TODO qdevified devices don't use this, remove when devices are qdevified */
+void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
+{
+ if (bdrv_attach_dev(bs, dev) < 0) {
+ abort();
+ }
+}
+
+void bdrv_detach_dev(BlockDriverState *bs, void *dev)
+/* TODO change to DeviceState *dev when all users are qdevified */
+{
+ assert(bs->dev == dev);
+ bs->dev = NULL;
+ bs->dev_ops = NULL;
+ bs->dev_opaque = NULL;
+ bs->buffer_alignment = 512;
+}
+
+/* TODO change to return DeviceState * when all users are qdevified */
+void *bdrv_get_attached_dev(BlockDriverState *bs)
+{
+ return bs->dev;
+}
+
+void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
+ void *opaque)
+{
+ bs->dev_ops = ops;
+ bs->dev_opaque = opaque;
+}
+
+void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
+ enum MonitorEvent ev,
+ BlockErrorAction action, bool is_read)
+{
+ QObject *data;
+ const char *action_str;
+
+ switch (action) {
+ case BDRV_ACTION_REPORT:
+ action_str = "report";
+ break;
+ case BDRV_ACTION_IGNORE:
+ action_str = "ignore";
+ break;
+ case BDRV_ACTION_STOP:
+ action_str = "stop";
+ break;
+ default:
+ abort();
+ }
+
+ data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
+ bdrv->device_name,
+ action_str,
+ is_read ? "read" : "write");
+ monitor_protocol_event(ev, data);
+
+ qobject_decref(data);
+}
+
+static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
+{
+ QObject *data;
+
+ data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
+ bdrv_get_device_name(bs), ejected);
+ monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
+
+ qobject_decref(data);
+}
+
+static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
+{
+ if (bs->dev_ops && bs->dev_ops->change_media_cb) {
+ bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
+ bs->dev_ops->change_media_cb(bs->dev_opaque, load);
+ if (tray_was_closed) {
+ /* tray open */
+ bdrv_emit_qmp_eject_event(bs, true);
+ }
+ if (load) {
+ /* tray close */
+ bdrv_emit_qmp_eject_event(bs, false);
+ }
+ }
+}
+
+bool bdrv_dev_has_removable_media(BlockDriverState *bs)
+{
+ return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
+}
+
+void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
+{
+ if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
+ bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
+ }
+}
+
+bool bdrv_dev_is_tray_open(BlockDriverState *bs)
+{
+ if (bs->dev_ops && bs->dev_ops->is_tray_open) {
+ return bs->dev_ops->is_tray_open(bs->dev_opaque);
+ }
+ return false;
+}
+
+static void bdrv_dev_resize_cb(BlockDriverState *bs)
+{
+ if (bs->dev_ops && bs->dev_ops->resize_cb) {
+ bs->dev_ops->resize_cb(bs->dev_opaque);
+ }
+}
+
+bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
+{
+ if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
+ return bs->dev_ops->is_medium_locked(bs->dev_opaque);
+ }
+ return false;
+}
+
+/*
+ * Run consistency checks on an image
+ *
+ * Returns 0 if the check could be completed (it doesn't mean that the image is
+ * free of errors) or -errno when an internal error occurred. The results of the
+ * check are stored in res.
+ */
+int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
+{
+ if (bs->drv->bdrv_check == NULL) {
+ return -ENOTSUP;
+ }
+
+ memset(res, 0, sizeof(*res));
+ return bs->drv->bdrv_check(bs, res, fix);
+}
+
+#define COMMIT_BUF_SECTORS 2048
+
+/* commit COW file into the raw image */
+int bdrv_commit(BlockDriverState *bs)
+{
+ BlockDriver *drv = bs->drv;
+ int64_t sector, total_sectors;
+ int n, ro, open_flags;
+ int ret = 0;
+ uint8_t *buf;
+ char filename[PATH_MAX];
+
+ if (!drv)
+ return -ENOMEDIUM;
+
+ if (!bs->backing_hd) {
+ return -ENOTSUP;
+ }
+
+ if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
+ return -EBUSY;
+ }
+
+ ro = bs->backing_hd->read_only;
+ /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
+ pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
+ open_flags = bs->backing_hd->open_flags;
+
+ if (ro) {
+ if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
+ return -EACCES;
+ }
+ }
+
+ total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
+ buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
+
+ for (sector = 0; sector < total_sectors; sector += n) {
+ if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
+
+ if (bdrv_read(bs, sector, buf, n) != 0) {
+ ret = -EIO;
+ goto ro_cleanup;
+ }
+
+ if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
+ ret = -EIO;
+ goto ro_cleanup;
+ }
+ }
+ }
+
+ if (drv->bdrv_make_empty) {
+ ret = drv->bdrv_make_empty(bs);
+ bdrv_flush(bs);
+ }
+
+ /*
+ * Make sure all data we wrote to the backing device is actually
+ * stable on disk.
+ */
+ if (bs->backing_hd)
+ bdrv_flush(bs->backing_hd);
+
+ro_cleanup:
+ g_free(buf);
+
+ if (ro) {
+ /* ignoring error return here */
+ bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
+ }
+
+ return ret;
+}
+
+int bdrv_commit_all(void)
+{
+ BlockDriverState *bs;
+
+ QTAILQ_FOREACH(bs, &bdrv_states, list) {
+ if (bs->drv && bs->backing_hd) {
+ int ret = bdrv_commit(bs);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+ }
+ return 0;
+}
+
+/**
+ * Remove an active request from the tracked requests list
+ *
+ * This function should be called when a tracked request is completing.
+ */
+static void tracked_request_end(BdrvTrackedRequest *req)
+{
+ QLIST_REMOVE(req, list);
+ qemu_co_queue_restart_all(&req->wait_queue);
+}
+
+/**
+ * Add an active request to the tracked requests list
+ */
+static void tracked_request_begin(BdrvTrackedRequest *req,
+ BlockDriverState *bs,
+ int64_t sector_num,
+ int nb_sectors, bool is_write)
+{
+ *req = (BdrvTrackedRequest){
+ .bs = bs,
+ .sector_num = sector_num,
+ .nb_sectors = nb_sectors,
+ .is_write = is_write,
+ .co = qemu_coroutine_self(),
+ };
+
+ qemu_co_queue_init(&req->wait_queue);
+
+ QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
+}
+
+/**
+ * Round a region to cluster boundaries
+ */
+void bdrv_round_to_clusters(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors,
+ int64_t *cluster_sector_num,
+ int *cluster_nb_sectors)
+{
+ BlockDriverInfo bdi;
+
+ if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
+ *cluster_sector_num = sector_num;
+ *cluster_nb_sectors = nb_sectors;
+ } else {
+ int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
+ *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
+ *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
+ nb_sectors, c);
+ }
+}
+
+static bool tracked_request_overlaps(BdrvTrackedRequest *req,
+ int64_t sector_num, int nb_sectors) {
+ /* aaaa bbbb */
+ if (sector_num >= req->sector_num + req->nb_sectors) {
+ return false;
+ }
+ /* bbbb aaaa */
+ if (req->sector_num >= sector_num + nb_sectors) {
+ return false;
+ }
+ return true;
+}
+
+static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors)
+{
+ BdrvTrackedRequest *req;
+ int64_t cluster_sector_num;
+ int cluster_nb_sectors;
+ bool retry;
+
+ /* If we touch the same cluster it counts as an overlap. This guarantees
+ * that allocating writes will be serialized and not race with each other
+ * for the same cluster. For example, in copy-on-read it ensures that the
+ * CoR read and write operations are atomic and guest writes cannot
+ * interleave between them.
+ */
+ bdrv_round_to_clusters(bs, sector_num, nb_sectors,
+ &cluster_sector_num, &cluster_nb_sectors);
+
+ do {
+ retry = false;
+ QLIST_FOREACH(req, &bs->tracked_requests, list) {
+ if (tracked_request_overlaps(req, cluster_sector_num,
+ cluster_nb_sectors)) {
+ /* Hitting this means there was a reentrant request, for
+ * example, a block driver issuing nested requests. This must
+ * never happen since it means deadlock.
+ */
+ assert(qemu_coroutine_self() != req->co);
+
+ qemu_co_queue_wait(&req->wait_queue);
+ retry = true;
+ break;
+ }
+ }
+ } while (retry);
+}
+
+/*
+ * Return values:
+ * 0 - success
+ * -EINVAL - backing format specified, but no file
+ * -ENOSPC - can't update the backing file because no space is left in the
+ * image file header
+ * -ENOTSUP - format driver doesn't support changing the backing file
+ */
+int bdrv_change_backing_file(BlockDriverState *bs,
+ const char *backing_file, const char *backing_fmt)
+{
+ BlockDriver *drv = bs->drv;
+ int ret;
+
+ /* Backing file format doesn't make sense without a backing file */
+ if (backing_fmt && !backing_file) {
+ return -EINVAL;
+ }
+
+ if (drv->bdrv_change_backing_file != NULL) {
+ ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
+ } else {
+ ret = -ENOTSUP;
+ }
+
+ if (ret == 0) {
+ pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
+ pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
+ }
+ return ret;
+}
+
+/*
+ * Finds the image layer in the chain that has 'bs' as its backing file.
+ *
+ * active is the current topmost image.
+ *
+ * Returns NULL if bs is not found in active's image chain,
+ * or if active == bs.
+ */
+BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
+ BlockDriverState *bs)
+{
+ BlockDriverState *overlay = NULL;
+ BlockDriverState *intermediate;
+
+ assert(active != NULL);
+ assert(bs != NULL);
+
+ /* if bs is the same as active, then by definition it has no overlay
+ */
+ if (active == bs) {
+ return NULL;
+ }
+
+ intermediate = active;
+ while (intermediate->backing_hd) {
+ if (intermediate->backing_hd == bs) {
+ overlay = intermediate;
+ break;
+ }
+ intermediate = intermediate->backing_hd;
+ }
+
+ return overlay;
+}
+
+typedef struct BlkIntermediateStates {
+ BlockDriverState *bs;
+ QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
+} BlkIntermediateStates;
+
+
+/*
+ * Drops images above 'base' up to and including 'top', and sets the image
+ * above 'top' to have base as its backing file.
+ *
+ * Requires that the overlay to 'top' is opened r/w, so that the backing file
+ * information in 'bs' can be properly updated.
+ *
+ * E.g., this will convert the following chain:
+ * bottom <- base <- intermediate <- top <- active
+ *
+ * to
+ *
+ * bottom <- base <- active
+ *
+ * It is allowed for bottom==base, in which case it converts:
+ *
+ * base <- intermediate <- top <- active
+ *
+ * to
+ *
+ * base <- active
+ *
+ * Error conditions:
+ * if active == top, that is considered an error
+ *
+ */
+int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
+ BlockDriverState *base)
+{
+ BlockDriverState *intermediate;
+ BlockDriverState *base_bs = NULL;
+ BlockDriverState *new_top_bs = NULL;
+ BlkIntermediateStates *intermediate_state, *next;
+ int ret = -EIO;
+
+ QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
+ QSIMPLEQ_INIT(&states_to_delete);
+
+ if (!top->drv || !base->drv) {
+ goto exit;
+ }
+
+ new_top_bs = bdrv_find_overlay(active, top);
+
+ if (new_top_bs == NULL) {
+ /* we could not find the image above 'top', this is an error */
+ goto exit;
+ }
+
+ /* special case of new_top_bs->backing_hd already pointing to base - nothing
+ * to do, no intermediate images */
+ if (new_top_bs->backing_hd == base) {
+ ret = 0;
+ goto exit;
+ }
+
+ intermediate = top;
+
+ /* now we will go down through the list, and add each BDS we find
+ * into our deletion queue, until we hit the 'base'
+ */
+ while (intermediate) {
+ intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
+ intermediate_state->bs = intermediate;
+ QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
+
+ if (intermediate->backing_hd == base) {
+ base_bs = intermediate->backing_hd;
+ break;
+ }
+ intermediate = intermediate->backing_hd;
+ }
+ if (base_bs == NULL) {
+ /* something went wrong, we did not end at the base. safely
+ * unravel everything, and exit with error */
+ goto exit;
+ }
+
+ /* success - we can delete the intermediate states, and link top->base */
+ ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
+ base_bs->drv ? base_bs->drv->format_name : "");
+ if (ret) {
+ goto exit;
+ }
+ new_top_bs->backing_hd = base_bs;
+
+
+ QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
+ /* so that bdrv_close() does not recursively close the chain */
+ intermediate_state->bs->backing_hd = NULL;
+ bdrv_delete(intermediate_state->bs);
+ }
+ ret = 0;
+
+exit:
+ QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
+ g_free(intermediate_state);
+ }
+ return ret;
+}
+
+
+static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
+ size_t size)
+{
+ int64_t len;
+
+ if (!bdrv_is_inserted(bs))
+ return -ENOMEDIUM;
+
+ if (bs->growable)
+ return 0;
+
+ len = bdrv_getlength(bs);
+
+ if (offset < 0)
+ return -EIO;
+
+ if ((offset > len) || (len - offset < size))
+ return -EIO;
+
+ return 0;
+}
+
+static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors)
+{
+ return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
+ nb_sectors * BDRV_SECTOR_SIZE);
+}
+
+typedef struct RwCo {
+ BlockDriverState *bs;
+ int64_t sector_num;
+ int nb_sectors;
+ QEMUIOVector *qiov;
+ bool is_write;
+ int ret;
+} RwCo;
+
+static void coroutine_fn bdrv_rw_co_entry(void *opaque)
+{
+ RwCo *rwco = opaque;
+
+ if (!rwco->is_write) {
+ rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
+ rwco->nb_sectors, rwco->qiov, 0);
+ } else {
+ rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
+ rwco->nb_sectors, rwco->qiov, 0);
+ }
+}
+
+/*
+ * Process a vectored synchronous request using coroutines
+ */
+static int bdrv_rwv_co(BlockDriverState *bs, int64_t sector_num,
+ QEMUIOVector *qiov, bool is_write)
+{
+ Coroutine *co;
+ RwCo rwco = {
+ .bs = bs,
+ .sector_num = sector_num,
+ .nb_sectors = qiov->size >> BDRV_SECTOR_BITS,
+ .qiov = qiov,
+ .is_write = is_write,
+ .ret = NOT_DONE,
+ };
+ assert((qiov->size & (BDRV_SECTOR_SIZE - 1)) == 0);
+
+ /**
+ * In sync call context, when the vcpu is blocked, this throttling timer
+ * will not fire; so the I/O throttling function has to be disabled here
+ * if it has been enabled.
+ */
+ if (bs->io_limits_enabled) {
+ fprintf(stderr, "Disabling I/O throttling on '%s' due "
+ "to synchronous I/O.\n", bdrv_get_device_name(bs));
+ bdrv_io_limits_disable(bs);
+ }
+
+ if (qemu_in_coroutine()) {
+ /* Fast-path if already in coroutine context */
+ bdrv_rw_co_entry(&rwco);
+ } else {
+ co = qemu_coroutine_create(bdrv_rw_co_entry);
+ qemu_coroutine_enter(co, &rwco);
+ while (rwco.ret == NOT_DONE) {
+ qemu_aio_wait();
+ }
+ }
+ return rwco.ret;
+}
+
+/*
+ * Process a synchronous request using coroutines
+ */
+static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
+ int nb_sectors, bool is_write)
+{
+ QEMUIOVector qiov;
+ struct iovec iov = {
+ .iov_base = (void *)buf,
+ .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
+ };
+
+ qemu_iovec_init_external(&qiov, &iov, 1);
+ return bdrv_rwv_co(bs, sector_num, &qiov, is_write);
+}
+
+/* return < 0 if error. See bdrv_write() for the return codes */
+int bdrv_read(BlockDriverState *bs, int64_t sector_num,
+ uint8_t *buf, int nb_sectors)
+{
+ return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
+}
+
+/* Just like bdrv_read(), but with I/O throttling temporarily disabled */
+int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
+ uint8_t *buf, int nb_sectors)
+{
+ bool enabled;
+ int ret;
+
+ enabled = bs->io_limits_enabled;
+ bs->io_limits_enabled = false;
+ ret = bdrv_read(bs, 0, buf, 1);
+ bs->io_limits_enabled = enabled;
+ return ret;
+}
+
+/* Return < 0 if error. Important errors are:
+ -EIO generic I/O error (may happen for all errors)
+ -ENOMEDIUM No media inserted.
+ -EINVAL Invalid sector number or nb_sectors
+ -EACCES Trying to write a read-only device
+*/
+int bdrv_write(BlockDriverState *bs, int64_t sector_num,
+ const uint8_t *buf, int nb_sectors)
+{
+ return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
+}
+
+int bdrv_writev(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov)
+{
+ return bdrv_rwv_co(bs, sector_num, qiov, true);
+}
+
+int bdrv_pread(BlockDriverState *bs, int64_t offset,
+ void *buf, int count1)
+{
+ uint8_t tmp_buf[BDRV_SECTOR_SIZE];
+ int len, nb_sectors, count;
+ int64_t sector_num;
+ int ret;
+
+ count = count1;
+ /* first read to align to sector start */
+ len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
+ if (len > count)
+ len = count;
+ sector_num = offset >> BDRV_SECTOR_BITS;
+ if (len > 0) {
+ if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
+ return ret;
+ memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
+ count -= len;
+ if (count == 0)
+ return count1;
+ sector_num++;
+ buf += len;
+ }
+
+ /* read the sectors "in place" */
+ nb_sectors = count >> BDRV_SECTOR_BITS;
+ if (nb_sectors > 0) {
+ if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
+ return ret;
+ sector_num += nb_sectors;
+ len = nb_sectors << BDRV_SECTOR_BITS;
+ buf += len;
+ count -= len;
+ }
+
+ /* add data from the last sector */
+ if (count > 0) {
+ if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
+ return ret;
+ memcpy(buf, tmp_buf, count);
+ }
+ return count1;
+}
+
+int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
+{
+ uint8_t tmp_buf[BDRV_SECTOR_SIZE];
+ int len, nb_sectors, count;
+ int64_t sector_num;
+ int ret;
+
+ count = qiov->size;
+
+ /* first write to align to sector start */
+ len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
+ if (len > count)
+ len = count;
+ sector_num = offset >> BDRV_SECTOR_BITS;
+ if (len > 0) {
+ if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
+ return ret;
+ qemu_iovec_to_buf(qiov, 0, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)),
+ len);
+ if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
+ return ret;
+ count -= len;
+ if (count == 0)
+ return qiov->size;
+ sector_num++;
+ }
+
+ /* write the sectors "in place" */
+ nb_sectors = count >> BDRV_SECTOR_BITS;
+ if (nb_sectors > 0) {
+ QEMUIOVector qiov_inplace;
+
+ qemu_iovec_init(&qiov_inplace, qiov->niov);
+ qemu_iovec_concat(&qiov_inplace, qiov, len,
+ nb_sectors << BDRV_SECTOR_BITS);
+ ret = bdrv_writev(bs, sector_num, &qiov_inplace);
+ qemu_iovec_destroy(&qiov_inplace);
+ if (ret < 0) {
+ return ret;
+ }
+
+ sector_num += nb_sectors;
+ len = nb_sectors << BDRV_SECTOR_BITS;
+ count -= len;
+ }
+
+ /* add data from the last sector */
+ if (count > 0) {
+ if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
+ return ret;
+ qemu_iovec_to_buf(qiov, qiov->size - count, tmp_buf, count);
+ if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
+ return ret;
+ }
+ return qiov->size;
+}
+
+int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
+ const void *buf, int count1)
+{
+ QEMUIOVector qiov;
+ struct iovec iov = {
+ .iov_base = (void *) buf,
+ .iov_len = count1,
+ };
+
+ qemu_iovec_init_external(&qiov, &iov, 1);
+ return bdrv_pwritev(bs, offset, &qiov);
+}
+
+/*
+ * Writes to the file and ensures that no writes are reordered across this
+ * request (acts as a barrier)
+ *
+ * Returns 0 on success, -errno in error cases.
+ */
+int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
+ const void *buf, int count)
+{
+ int ret;
+
+ ret = bdrv_pwrite(bs, offset, buf, count);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* No flush needed for cache modes that already do it */
+ if (bs->enable_write_cache) {
+ bdrv_flush(bs);
+ }
+
+ return 0;
+}
+
+static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
+{
+ /* Perform I/O through a temporary buffer so that users who scribble over
+ * their read buffer while the operation is in progress do not end up
+ * modifying the image file. This is critical for zero-copy guest I/O
+ * where anything might happen inside guest memory.
+ */
+ void *bounce_buffer;
+
+ BlockDriver *drv = bs->drv;
+ struct iovec iov;
+ QEMUIOVector bounce_qiov;
+ int64_t cluster_sector_num;
+ int cluster_nb_sectors;
+ size_t skip_bytes;
+ int ret;
+
+ /* Cover entire cluster so no additional backing file I/O is required when
+ * allocating cluster in the image file.
+ */
+ bdrv_round_to_clusters(bs, sector_num, nb_sectors,
+ &cluster_sector_num, &cluster_nb_sectors);
+
+ trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
+ cluster_sector_num, cluster_nb_sectors);
+
+ iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
+ iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
+ qemu_iovec_init_external(&bounce_qiov, &iov, 1);
+
+ ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
+ &bounce_qiov);
+ if (ret < 0) {
+ goto err;
+ }
+
+ if (drv->bdrv_co_write_zeroes &&
+ buffer_is_zero(bounce_buffer, iov.iov_len)) {
+ ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
+ cluster_nb_sectors);
+ } else {
+ /* This does not change the data on the disk, it is not necessary
+ * to flush even in cache=writethrough mode.
+ */
+ ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
+ &bounce_qiov);
+ }
+
+ if (ret < 0) {
+ /* It might be okay to ignore write errors for guest requests. If this
+ * is a deliberate copy-on-read then we don't want to ignore the error.
+ * Simply report it in all cases.
+ */
+ goto err;
+ }
+
+ skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
+ qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
+ nb_sectors * BDRV_SECTOR_SIZE);
+
+err:
+ qemu_vfree(bounce_buffer);
+ return ret;
+}
+
+/*
+ * Handle a read request in coroutine context
+ */
+static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
+ BdrvRequestFlags flags)
+{
+ BlockDriver *drv = bs->drv;
+ BdrvTrackedRequest req;
+ int ret;
+
+ if (!drv) {
+ return -ENOMEDIUM;
+ }
+ if (bdrv_check_request(bs, sector_num, nb_sectors)) {
+ return -EIO;
+ }
+
+ /* throttling disk read I/O */
+ if (bs->io_limits_enabled) {
+ bdrv_io_limits_intercept(bs, false, nb_sectors);
+ }
+
+ if (bs->copy_on_read) {
+ flags |= BDRV_REQ_COPY_ON_READ;
+ }
+ if (flags & BDRV_REQ_COPY_ON_READ) {
+ bs->copy_on_read_in_flight++;
+ }
+
+ if (bs->copy_on_read_in_flight) {
+ wait_for_overlapping_requests(bs, sector_num, nb_sectors);
+ }
+
+ tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
+
+ if (flags & BDRV_REQ_COPY_ON_READ) {
+ int pnum;
+
+ ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
+ if (ret < 0) {
+ goto out;
+ }
+
+ if (!ret || pnum != nb_sectors) {
+ ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
+ goto out;
+ }
+ }
+
+ ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
+
+out:
+ tracked_request_end(&req);
+
+ if (flags & BDRV_REQ_COPY_ON_READ) {
+ bs->copy_on_read_in_flight--;
+ }
+
+ return ret;
+}
+
+int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, QEMUIOVector *qiov)
+{
+ trace_bdrv_co_readv(bs, sector_num, nb_sectors);
+
+ return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
+}
+
+int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
+{
+ trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
+
+ return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
+ BDRV_REQ_COPY_ON_READ);
+}
+
+static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors)
+{
+ BlockDriver *drv = bs->drv;
+ QEMUIOVector qiov;
+ struct iovec iov;
+ int ret;
+
+ /* TODO Emulate only part of misaligned requests instead of letting block
+ * drivers return -ENOTSUP and emulate everything */
+
+ /* First try the efficient write zeroes operation */
+ if (drv->bdrv_co_write_zeroes) {
+ ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
+ if (ret != -ENOTSUP) {
+ return ret;
+ }
+ }
+
+ /* Fall back to bounce buffer if write zeroes is unsupported */
+ iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
+ iov.iov_base = qemu_blockalign(bs, iov.iov_len);
+ memset(iov.iov_base, 0, iov.iov_len);
+ qemu_iovec_init_external(&qiov, &iov, 1);
+
+ ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
+
+ qemu_vfree(iov.iov_base);
+ return ret;
+}
+
+/*
+ * Handle a write request in coroutine context
+ */
+static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
+ BdrvRequestFlags flags)
+{
+ BlockDriver *drv = bs->drv;
+ BdrvTrackedRequest req;
+ int ret;
+
+ if (!bs->drv) {
+ return -ENOMEDIUM;
+ }
+ if (bs->read_only) {
+ return -EACCES;
+ }
+ if (bdrv_check_request(bs, sector_num, nb_sectors)) {
+ return -EIO;
+ }
+
+ /* throttling disk write I/O */
+ if (bs->io_limits_enabled) {
+ bdrv_io_limits_intercept(bs, true, nb_sectors);
+ }
+
+ if (bs->copy_on_read_in_flight) {
+ wait_for_overlapping_requests(bs, sector_num, nb_sectors);
+ }
+
+ tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
+
+ ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
+
+ if (ret < 0) {
+ /* Do nothing, write notifier decided to fail this request */
+ } else if (flags & BDRV_REQ_ZERO_WRITE) {
+ ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
+ } else {
+ ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
+ }
+
+ if (ret == 0 && !bs->enable_write_cache) {
+ ret = bdrv_co_flush(bs);
+ }
+
+ if (bs->dirty_bitmap) {
+ bdrv_set_dirty(bs, sector_num, nb_sectors);
+ }
+
+ if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
+ bs->wr_highest_sector = sector_num + nb_sectors - 1;
+ }
+
+ tracked_request_end(&req);
+
+ return ret;
+}
+
+int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, QEMUIOVector *qiov)
+{
+ trace_bdrv_co_writev(bs, sector_num, nb_sectors);
+
+ return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
+}
+
+int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors)
+{
+ trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
+
+ return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
+ BDRV_REQ_ZERO_WRITE);
+}
+
+/**
+ * Truncate file to 'offset' bytes (needed only for file protocols)
+ */
+int bdrv_truncate(BlockDriverState *bs, int64_t offset)
+{
+ BlockDriver *drv = bs->drv;
+ int ret;
+ if (!drv)
+ return -ENOMEDIUM;
+ if (!drv->bdrv_truncate)
+ return -ENOTSUP;
+ if (bs->read_only)
+ return -EACCES;
+ if (bdrv_in_use(bs))
+ return -EBUSY;
+ ret = drv->bdrv_truncate(bs, offset);
+ if (ret == 0) {
+ ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
+ bdrv_dev_resize_cb(bs);
+ }
+ return ret;
+}
+
+/**
+ * Length of a allocated file in bytes. Sparse files are counted by actual
+ * allocated space. Return < 0 if error or unknown.
+ */
+int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
+{
+ BlockDriver *drv = bs->drv;
+ if (!drv) {
+ return -ENOMEDIUM;
+ }
+ if (drv->bdrv_get_allocated_file_size) {
+ return drv->bdrv_get_allocated_file_size(bs);
+ }
+ if (bs->file) {
+ return bdrv_get_allocated_file_size(bs->file);
+ }
+ return -ENOTSUP;
+}
+
+/**
+ * Length of a file in bytes. Return < 0 if error or unknown.
+ */
+int64_t bdrv_getlength(BlockDriverState *bs)
+{
+ BlockDriver *drv = bs->drv;
+ if (!drv)
+ return -ENOMEDIUM;
+
+ if (bs->growable || bdrv_dev_has_removable_media(bs)) {
+ if (drv->bdrv_getlength) {
+ return drv->bdrv_getlength(bs);
+ }
+ }
+ return bs->total_sectors * BDRV_SECTOR_SIZE;
+}
+
+/* return 0 as number of sectors if no device present or error */
+void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
+{
+ int64_t length;
+ length = bdrv_getlength(bs);
+ if (length < 0)
+ length = 0;
+ else
+ length = length >> BDRV_SECTOR_BITS;
+ *nb_sectors_ptr = length;
+}
+
+/* throttling disk io limits */
+void bdrv_set_io_limits(BlockDriverState *bs,
+ BlockIOLimit *io_limits)
+{
+ bs->io_limits = *io_limits;
+ bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
+}
+
+void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
+ BlockdevOnError on_write_error)
+{
+ bs->on_read_error = on_read_error;
+ bs->on_write_error = on_write_error;
+}
+
+BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
+{
+ return is_read ? bs->on_read_error : bs->on_write_error;
+}
+
+BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
+{
+ BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
+
+ switch (on_err) {
+ case BLOCKDEV_ON_ERROR_ENOSPC:
+ return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
+ case BLOCKDEV_ON_ERROR_STOP:
+ return BDRV_ACTION_STOP;
+ case BLOCKDEV_ON_ERROR_REPORT:
+ return BDRV_ACTION_REPORT;
+ case BLOCKDEV_ON_ERROR_IGNORE:
+ return BDRV_ACTION_IGNORE;
+ default:
+ abort();
+ }
+}
+
+/* This is done by device models because, while the block layer knows
+ * about the error, it does not know whether an operation comes from
+ * the device or the block layer (from a job, for example).
+ */
+void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
+ bool is_read, int error)
+{
+ assert(error >= 0);
+ bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
+ if (action == BDRV_ACTION_STOP) {
+ vm_stop(RUN_STATE_IO_ERROR);
+ bdrv_iostatus_set_err(bs, error);
+ }
+}
+
+int bdrv_is_read_only(BlockDriverState *bs)
+{
+ return bs->read_only;
+}
+
+int bdrv_is_sg(BlockDriverState *bs)
+{
+ return bs->sg;
+}
+
+int bdrv_enable_write_cache(BlockDriverState *bs)
+{
+ return bs->enable_write_cache;
+}
+
+void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
+{
+ bs->enable_write_cache = wce;
+
+ /* so a reopen() will preserve wce */
+ if (wce) {
+ bs->open_flags |= BDRV_O_CACHE_WB;
+ } else {
+ bs->open_flags &= ~BDRV_O_CACHE_WB;
+ }
+}
+
+int bdrv_is_encrypted(BlockDriverState *bs)
+{
+ if (bs->backing_hd && bs->backing_hd->encrypted)
+ return 1;
+ return bs->encrypted;
+}
+
+int bdrv_key_required(BlockDriverState *bs)
+{
+ BlockDriverState *backing_hd = bs->backing_hd;
+
+ if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
+ return 1;
+ return (bs->encrypted && !bs->valid_key);
+}
+
+int bdrv_set_key(BlockDriverState *bs, const char *key)
+{
+ int ret;
+ if (bs->backing_hd && bs->backing_hd->encrypted) {
+ ret = bdrv_set_key(bs->backing_hd, key);
+ if (ret < 0)
+ return ret;
+ if (!bs->encrypted)
+ return 0;
+ }
+ if (!bs->encrypted) {
+ return -EINVAL;
+ } else if (!bs->drv || !bs->drv->bdrv_set_key) {
+ return -ENOMEDIUM;
+ }
+ ret = bs->drv->bdrv_set_key(bs, key);
+ if (ret < 0) {
+ bs->valid_key = 0;
+ } else if (!bs->valid_key) {
+ bs->valid_key = 1;
+ /* call the change callback now, we skipped it on open */
+ bdrv_dev_change_media_cb(bs, true);
+ }
+ return ret;
+}
+
+const char *bdrv_get_format_name(BlockDriverState *bs)
+{
+ return bs->drv ? bs->drv->format_name : NULL;
+}
+
+void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
+ void *opaque)
+{
+ BlockDriver *drv;
+
+ QLIST_FOREACH(drv, &bdrv_drivers, list) {
+ it(opaque, drv->format_name);
+ }
+}
+
+BlockDriverState *bdrv_find(const char *name)
+{
+ BlockDriverState *bs;
+
+ QTAILQ_FOREACH(bs, &bdrv_states, list) {
+ if (!strcmp(name, bs->device_name)) {
+ return bs;
+ }
+ }
+ return NULL;
+}
+
+BlockDriverState *bdrv_next(BlockDriverState *bs)
+{
+ if (!bs) {
+ return QTAILQ_FIRST(&bdrv_states);
+ }
+ return QTAILQ_NEXT(bs, list);
+}
+
+void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
+{
+ BlockDriverState *bs;
+
+ QTAILQ_FOREACH(bs, &bdrv_states, list) {
+ it(opaque, bs);
+ }
+}
+
+const char *bdrv_get_device_name(BlockDriverState *bs)
+{
+ return bs->device_name;
+}
+
+int bdrv_get_flags(BlockDriverState *bs)
+{
+ return bs->open_flags;
+}
+
+int bdrv_flush_all(void)
+{
+ BlockDriverState *bs;
+ int result = 0;
+
+ QTAILQ_FOREACH(bs, &bdrv_states, list) {
+ int ret = bdrv_flush(bs);
+ if (ret < 0 && !result) {
+ result = ret;
+ }
+ }
+
+ return result;
+}
+
+int bdrv_has_zero_init_1(BlockDriverState *bs)
+{
+ return 1;
+}
+
+int bdrv_has_zero_init(BlockDriverState *bs)
+{
+ assert(bs->drv);
+
+ if (bs->drv->bdrv_has_zero_init) {
+ return bs->drv->bdrv_has_zero_init(bs);
+ }
+
+ /* safe default */
+ return 0;
+}
+
+typedef struct BdrvCoIsAllocatedData {
+ BlockDriverState *bs;
+ BlockDriverState *base;
+ int64_t sector_num;
+ int nb_sectors;
+ int *pnum;
+ int ret;
+ bool done;
+} BdrvCoIsAllocatedData;
+
+/*
+ * Returns true iff the specified sector is present in the disk image. Drivers
+ * not implementing the functionality are assumed to not support backing files,
+ * hence all their sectors are reported as allocated.
+ *
+ * If 'sector_num' is beyond the end of the disk image the return value is 0
+ * and 'pnum' is set to 0.
+ *
+ * 'pnum' is set to the number of sectors (including and immediately following
+ * the specified sector) that are known to be in the same
+ * allocated/unallocated state.
+ *
+ * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
+ * beyond the end of the disk image it will be clamped.
+ */
+int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, int *pnum)
+{
+ int64_t n;
+
+ if (sector_num >= bs->total_sectors) {
+ *pnum = 0;
+ return 0;
+ }
+
+ n = bs->total_sectors - sector_num;
+ if (n < nb_sectors) {
+ nb_sectors = n;
+ }
+
+ if (!bs->drv->bdrv_co_is_allocated) {
+ *pnum = nb_sectors;
+ return 1;
+ }
+
+ return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
+}
+
+/* Coroutine wrapper for bdrv_is_allocated() */
+static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
+{
+ BdrvCoIsAllocatedData *data = opaque;
+ BlockDriverState *bs = data->bs;
+
+ data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
+ data->pnum);
+ data->done = true;
+}
+
+/*
+ * Synchronous wrapper around bdrv_co_is_allocated().
+ *
+ * See bdrv_co_is_allocated() for details.
+ */
+int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
+ int *pnum)
+{
+ Coroutine *co;
+ BdrvCoIsAllocatedData data = {
+ .bs = bs,
+ .sector_num = sector_num,
+ .nb_sectors = nb_sectors,
+ .pnum = pnum,
+ .done = false,
+ };
+
+ co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
+ qemu_coroutine_enter(co, &data);
+ while (!data.done) {
+ qemu_aio_wait();
+ }
+ return data.ret;
+}
+
+/*
+ * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
+ *
+ * Return true if the given sector is allocated in any image between
+ * BASE and TOP (inclusive). BASE can be NULL to check if the given
+ * sector is allocated in any image of the chain. Return false otherwise.
+ *
+ * 'pnum' is set to the number of sectors (including and immediately following
+ * the specified sector) that are known to be in the same
+ * allocated/unallocated state.
+ *
+ */
+int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
+ BlockDriverState *base,
+ int64_t sector_num,
+ int nb_sectors, int *pnum)
+{
+ BlockDriverState *intermediate;
+ int ret, n = nb_sectors;
+
+ intermediate = top;
+ while (intermediate && intermediate != base) {
+ int pnum_inter;
+ ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
+ &pnum_inter);
+ if (ret < 0) {
+ return ret;
+ } else if (ret) {
+ *pnum = pnum_inter;
+ return 1;
+ }
+
+ /*
+ * [sector_num, nb_sectors] is unallocated on top but intermediate
+ * might have
+ *
+ * [sector_num+x, nr_sectors] allocated.
+ */
+ if (n > pnum_inter &&
+ (intermediate == top ||
+ sector_num + pnum_inter < intermediate->total_sectors)) {
+ n = pnum_inter;
+ }
+
+ intermediate = intermediate->backing_hd;
+ }
+
+ *pnum = n;
+ return 0;
+}
+
+/* Coroutine wrapper for bdrv_is_allocated_above() */
+static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque)
+{
+ BdrvCoIsAllocatedData *data = opaque;
+ BlockDriverState *top = data->bs;
+ BlockDriverState *base = data->base;
+
+ data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num,
+ data->nb_sectors, data->pnum);
+ data->done = true;
+}
+
+/*
+ * Synchronous wrapper around bdrv_co_is_allocated_above().
+ *
+ * See bdrv_co_is_allocated_above() for details.
+ */
+int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base,
+ int64_t sector_num, int nb_sectors, int *pnum)
+{
+ Coroutine *co;
+ BdrvCoIsAllocatedData data = {
+ .bs = top,
+ .base = base,
+ .sector_num = sector_num,
+ .nb_sectors = nb_sectors,
+ .pnum = pnum,
+ .done = false,
+ };
+
+ co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry);
+ qemu_coroutine_enter(co, &data);
+ while (!data.done) {
+ qemu_aio_wait();
+ }
+ return data.ret;
+}
+
+const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
+{
+ if (bs->backing_hd && bs->backing_hd->encrypted)
+ return bs->backing_file;
+ else if (bs->encrypted)
+ return bs->filename;
+ else
+ return NULL;
+}
+
+void bdrv_get_backing_filename(BlockDriverState *bs,
+ char *filename, int filename_size)
+{
+ pstrcpy(filename, filename_size, bs->backing_file);
+}
+
+int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
+ const uint8_t *buf, int nb_sectors)
+{
+ BlockDriver *drv = bs->drv;
+ if (!drv)
+ return -ENOMEDIUM;
+ if (!drv->bdrv_write_compressed)
+ return -ENOTSUP;
+ if (bdrv_check_request(bs, sector_num, nb_sectors))
+ return -EIO;
+
+ assert(!bs->dirty_bitmap);
+
+ return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
+}
+
+int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
+{
+ BlockDriver *drv = bs->drv;
+ if (!drv)
+ return -ENOMEDIUM;
+ if (!drv->bdrv_get_info)
+ return -ENOTSUP;
+ memset(bdi, 0, sizeof(*bdi));
+ return drv->bdrv_get_info(bs, bdi);
+}
+
+int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
+ int64_t pos, int size)
+{
+ QEMUIOVector qiov;
+ struct iovec iov = {
+ .iov_base = (void *) buf,
+ .iov_len = size,
+ };
+
+ qemu_iovec_init_external(&qiov, &iov, 1);
+ return bdrv_writev_vmstate(bs, &qiov, pos);
+}
+
+int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
+{
+ BlockDriver *drv = bs->drv;
+
+ if (!drv) {
+ return -ENOMEDIUM;
+ } else if (drv->bdrv_save_vmstate) {
+ return drv->bdrv_save_vmstate(bs, qiov, pos);
+ } else if (bs->file) {
+ return bdrv_writev_vmstate(bs->file, qiov, pos);
+ }
+
+ return -ENOTSUP;
+}
+
+int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
+ int64_t pos, int size)
+{
+ BlockDriver *drv = bs->drv;
+ if (!drv)
+ return -ENOMEDIUM;
+ if (drv->bdrv_load_vmstate)
+ return drv->bdrv_load_vmstate(bs, buf, pos, size);
+ if (bs->file)
+ return bdrv_load_vmstate(bs->file, buf, pos, size);
+ return -ENOTSUP;
+}
+
+void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
+{
+ if (!bs || !bs->drv || !bs->drv->bdrv_debug_event) {
+ return;
+ }
+
+ bs->drv->bdrv_debug_event(bs, event);
+}
+
+int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
+ const char *tag)
+{
+ while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) {
+ bs = bs->file;
+ }
+
+ if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) {
+ return bs->drv->bdrv_debug_breakpoint(bs, event, tag);
+ }
+
+ return -ENOTSUP;
+}
+
+int bdrv_debug_resume(BlockDriverState *bs, const char *tag)
+{
+ while (bs && bs->drv && !bs->drv->bdrv_debug_resume) {
+ bs = bs->file;
+ }
+
+ if (bs && bs->drv && bs->drv->bdrv_debug_resume) {
+ return bs->drv->bdrv_debug_resume(bs, tag);
+ }
+
+ return -ENOTSUP;
+}
+
+bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag)
+{
+ while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) {
+ bs = bs->file;
+ }
+
+ if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) {
+ return bs->drv->bdrv_debug_is_suspended(bs, tag);
+ }
+
+ return false;
+}
+
+int bdrv_is_snapshot(BlockDriverState *bs)
+{
+ return !!(bs->open_flags & BDRV_O_SNAPSHOT);
+}
+
+/* backing_file can either be relative, or absolute, or a protocol. If it is
+ * relative, it must be relative to the chain. So, passing in bs->filename
+ * from a BDS as backing_file should not be done, as that may be relative to
+ * the CWD rather than the chain. */
+BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
+ const char *backing_file)
+{
+ char *filename_full = NULL;
+ char *backing_file_full = NULL;
+ char *filename_tmp = NULL;
+ int is_protocol = 0;
+ BlockDriverState *curr_bs = NULL;
+ BlockDriverState *retval = NULL;
+
+ if (!bs || !bs->drv || !backing_file) {
+ return NULL;
+ }
+
+ filename_full = g_malloc(PATH_MAX);
+ backing_file_full = g_malloc(PATH_MAX);
+ filename_tmp = g_malloc(PATH_MAX);
+
+ is_protocol = path_has_protocol(backing_file);
+
+ for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
+
+ /* If either of the filename paths is actually a protocol, then
+ * compare unmodified paths; otherwise make paths relative */
+ if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
+ if (strcmp(backing_file, curr_bs->backing_file) == 0) {
+ retval = curr_bs->backing_hd;
+ break;
+ }
+ } else {
+ /* If not an absolute filename path, make it relative to the current
+ * image's filename path */
+ path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
+ backing_file);
+
+ /* We are going to compare absolute pathnames */
+ if (!realpath(filename_tmp, filename_full)) {
+ continue;
+ }
+
+ /* We need to make sure the backing filename we are comparing against
+ * is relative to the current image filename (or absolute) */
+ path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
+ curr_bs->backing_file);
+
+ if (!realpath(filename_tmp, backing_file_full)) {
+ continue;
+ }
+
+ if (strcmp(backing_file_full, filename_full) == 0) {
+ retval = curr_bs->backing_hd;
+ break;
+ }
+ }
+ }
+
+ g_free(filename_full);
+ g_free(backing_file_full);
+ g_free(filename_tmp);
+ return retval;
+}
+
+int bdrv_get_backing_file_depth(BlockDriverState *bs)
+{
+ if (!bs->drv) {
+ return 0;
+ }
+
+ if (!bs->backing_hd) {
+ return 0;
+ }
+
+ return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
+}
+
+BlockDriverState *bdrv_find_base(BlockDriverState *bs)
+{
+ BlockDriverState *curr_bs = NULL;
+
+ if (!bs) {
+ return NULL;
+ }
+
+ curr_bs = bs;
+
+ while (curr_bs->backing_hd) {
+ curr_bs = curr_bs->backing_hd;
+ }
+ return curr_bs;
+}
+
+/**************************************************************/
+/* async I/Os */
+
+BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
+ QEMUIOVector *qiov, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
+
+ return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
+ cb, opaque, false);
+}
+
+BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
+ QEMUIOVector *qiov, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
+
+ return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
+ cb, opaque, true);
+}
+
+
+typedef struct MultiwriteCB {
+ int error;
+ int num_requests;
+ int num_callbacks;
+ struct {
+ BlockDriverCompletionFunc *cb;
+ void *opaque;
+ QEMUIOVector *free_qiov;
+ } callbacks[];
+} MultiwriteCB;
+
+static void multiwrite_user_cb(MultiwriteCB *mcb)
+{
+ int i;
+
+ for (i = 0; i < mcb->num_callbacks; i++) {
+ mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
+ if (mcb->callbacks[i].free_qiov) {
+ qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
+ }
+ g_free(mcb->callbacks[i].free_qiov);
+ }
+}
+
+static void multiwrite_cb(void *opaque, int ret)
+{
+ MultiwriteCB *mcb = opaque;
+
+ trace_multiwrite_cb(mcb, ret);
+
+ if (ret < 0 && !mcb->error) {
+ mcb->error = ret;
+ }
+
+ mcb->num_requests--;
+ if (mcb->num_requests == 0) {
+ multiwrite_user_cb(mcb);
+ g_free(mcb);
+ }
+}
+
+static int multiwrite_req_compare(const void *a, const void *b)
+{
+ const BlockRequest *req1 = a, *req2 = b;
+
+ /*
+ * Note that we can't simply subtract req2->sector from req1->sector
+ * here as that could overflow the return value.
+ */
+ if (req1->sector > req2->sector) {
+ return 1;
+ } else if (req1->sector < req2->sector) {
+ return -1;
+ } else {
+ return 0;
+ }
+}
+
+/*
+ * Takes a bunch of requests and tries to merge them. Returns the number of
+ * requests that remain after merging.
+ */
+static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
+ int num_reqs, MultiwriteCB *mcb)
+{
+ int i, outidx;
+
+ // Sort requests by start sector
+ qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
+
+ // Check if adjacent requests touch the same clusters. If so, combine them,
+ // filling up gaps with zero sectors.
+ outidx = 0;
+ for (i = 1; i < num_reqs; i++) {
+ int merge = 0;
+ int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
+
+ // Handle exactly sequential writes and overlapping writes.
+ if (reqs[i].sector <= oldreq_last) {
+ merge = 1;
+ }
+
+ if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
+ merge = 0;
+ }
+
+ if (merge) {
+ size_t size;
+ QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
+ qemu_iovec_init(qiov,
+ reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
+
+ // Add the first request to the merged one. If the requests are
+ // overlapping, drop the last sectors of the first request.
+ size = (reqs[i].sector - reqs[outidx].sector) << 9;
+ qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
+
+ // We should need to add any zeros between the two requests
+ assert (reqs[i].sector <= oldreq_last);
+
+ // Add the second request
+ qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
+
+ reqs[outidx].nb_sectors = qiov->size >> 9;
+ reqs[outidx].qiov = qiov;
+
+ mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
+ } else {
+ outidx++;
+ reqs[outidx].sector = reqs[i].sector;
+ reqs[outidx].nb_sectors = reqs[i].nb_sectors;
+ reqs[outidx].qiov = reqs[i].qiov;
+ }
+ }
+
+ return outidx + 1;
+}
+
+/*
+ * Submit multiple AIO write requests at once.
+ *
+ * On success, the function returns 0 and all requests in the reqs array have
+ * been submitted. In error case this function returns -1, and any of the
+ * requests may or may not be submitted yet. In particular, this means that the
+ * callback will be called for some of the requests, for others it won't. The
+ * caller must check the error field of the BlockRequest to wait for the right
+ * callbacks (if error != 0, no callback will be called).
+ *
+ * The implementation may modify the contents of the reqs array, e.g. to merge
+ * requests. However, the fields opaque and error are left unmodified as they
+ * are used to signal failure for a single request to the caller.
+ */
+int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
+{
+ MultiwriteCB *mcb;
+ int i;
+
+ /* don't submit writes if we don't have a medium */
+ if (bs->drv == NULL) {
+ for (i = 0; i < num_reqs; i++) {
+ reqs[i].error = -ENOMEDIUM;
+ }
+ return -1;
+ }
+
+ if (num_reqs == 0) {
+ return 0;
+ }
+
+ // Create MultiwriteCB structure
+ mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
+ mcb->num_requests = 0;
+ mcb->num_callbacks = num_reqs;
+
+ for (i = 0; i < num_reqs; i++) {
+ mcb->callbacks[i].cb = reqs[i].cb;
+ mcb->callbacks[i].opaque = reqs[i].opaque;
+ }
+
+ // Check for mergable requests
+ num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
+
+ trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
+
+ /* Run the aio requests. */
+ mcb->num_requests = num_reqs;
+ for (i = 0; i < num_reqs; i++) {
+ bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
+ reqs[i].nb_sectors, multiwrite_cb, mcb);
+ }
+
+ return 0;
+}
+
+void bdrv_aio_cancel(BlockDriverAIOCB *acb)
+{
+ acb->aiocb_info->cancel(acb);
+}
+
+/* block I/O throttling */
+static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
+ bool is_write, double elapsed_time, uint64_t *wait)
+{
+ uint64_t bps_limit = 0;
+ uint64_t extension;
+ double bytes_limit, bytes_base, bytes_res;
+ double slice_time, wait_time;
+
+ if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
+ bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
+ } else if (bs->io_limits.bps[is_write]) {
+ bps_limit = bs->io_limits.bps[is_write];
+ } else {
+ if (wait) {
+ *wait = 0;
+ }
+
+ return false;
+ }
+
+ slice_time = bs->slice_end - bs->slice_start;
+ slice_time /= (NANOSECONDS_PER_SECOND);
+ bytes_limit = bps_limit * slice_time;
+ bytes_base = bs->slice_submitted.bytes[is_write];
+ if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
+ bytes_base += bs->slice_submitted.bytes[!is_write];
+ }
+
+ /* bytes_base: the bytes of data which have been read/written; and
+ * it is obtained from the history statistic info.
+ * bytes_res: the remaining bytes of data which need to be read/written.
+ * (bytes_base + bytes_res) / bps_limit: used to calcuate
+ * the total time for completing reading/writting all data.
+ */
+ bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
+
+ if (bytes_base + bytes_res <= bytes_limit) {
+ if (wait) {
+ *wait = 0;
+ }
+
+ return false;
+ }
+
+ /* Calc approx time to dispatch */
+ wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
+
+ /* When the I/O rate at runtime exceeds the limits,
+ * bs->slice_end need to be extended in order that the current statistic
+ * info can be kept until the timer fire, so it is increased and tuned
+ * based on the result of experiment.
+ */
+ extension = wait_time * NANOSECONDS_PER_SECOND;
+ extension = DIV_ROUND_UP(extension, BLOCK_IO_SLICE_TIME) *
+ BLOCK_IO_SLICE_TIME;
+ bs->slice_end += extension;
+ if (wait) {
+ *wait = wait_time * NANOSECONDS_PER_SECOND;
+ }
+
+ return true;
+}
+
+static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
+ double elapsed_time, uint64_t *wait)
+{
+ uint64_t iops_limit = 0;
+ double ios_limit, ios_base;
+ double slice_time, wait_time;
+
+ if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
+ iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
+ } else if (bs->io_limits.iops[is_write]) {
+ iops_limit = bs->io_limits.iops[is_write];
+ } else {
+ if (wait) {
+ *wait = 0;
+ }
+
+ return false;
+ }
+
+ slice_time = bs->slice_end - bs->slice_start;
+ slice_time /= (NANOSECONDS_PER_SECOND);
+ ios_limit = iops_limit * slice_time;
+ ios_base = bs->slice_submitted.ios[is_write];
+ if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
+ ios_base += bs->slice_submitted.ios[!is_write];
+ }
+
+ if (ios_base + 1 <= ios_limit) {
+ if (wait) {
+ *wait = 0;
+ }
+
+ return false;
+ }
+
+ /* Calc approx time to dispatch, in seconds */
+ wait_time = (ios_base + 1) / iops_limit;
+ if (wait_time > elapsed_time) {
+ wait_time = wait_time - elapsed_time;
+ } else {
+ wait_time = 0;
+ }
+
+ /* Exceeded current slice, extend it by another slice time */
+ bs->slice_end += BLOCK_IO_SLICE_TIME;
+ if (wait) {
+ *wait = wait_time * NANOSECONDS_PER_SECOND;
+ }
+
+ return true;
+}
+
+static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
+ bool is_write, int64_t *wait)
+{
+ int64_t now, max_wait;
+ uint64_t bps_wait = 0, iops_wait = 0;
+ double elapsed_time;
+ int bps_ret, iops_ret;
+
+ now = qemu_get_clock_ns(vm_clock);
+ if (now > bs->slice_end) {
+ bs->slice_start = now;
+ bs->slice_end = now + BLOCK_IO_SLICE_TIME;
+ memset(&bs->slice_submitted, 0, sizeof(bs->slice_submitted));
+ }
+
+ elapsed_time = now - bs->slice_start;
+ elapsed_time /= (NANOSECONDS_PER_SECOND);
+
+ bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
+ is_write, elapsed_time, &bps_wait);
+ iops_ret = bdrv_exceed_iops_limits(bs, is_write,
+ elapsed_time, &iops_wait);
+ if (bps_ret || iops_ret) {
+ max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
+ if (wait) {
+ *wait = max_wait;
+ }
+
+ now = qemu_get_clock_ns(vm_clock);
+ if (bs->slice_end < now + max_wait) {
+ bs->slice_end = now + max_wait;
+ }
+
+ return true;
+ }
+
+ if (wait) {
+ *wait = 0;
+ }
+
+ bs->slice_submitted.bytes[is_write] += (int64_t)nb_sectors *
+ BDRV_SECTOR_SIZE;
+ bs->slice_submitted.ios[is_write]++;
+
+ return false;
+}
+
+/**************************************************************/
+/* async block device emulation */
+
+typedef struct BlockDriverAIOCBSync {
+ BlockDriverAIOCB common;
+ QEMUBH *bh;
+ int ret;
+ /* vector translation state */
+ QEMUIOVector *qiov;
+ uint8_t *bounce;
+ int is_write;
+} BlockDriverAIOCBSync;
+
+static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
+{
+ BlockDriverAIOCBSync *acb =
+ container_of(blockacb, BlockDriverAIOCBSync, common);
+ qemu_bh_delete(acb->bh);
+ acb->bh = NULL;
+ qemu_aio_release(acb);
+}
+
+static const AIOCBInfo bdrv_em_aiocb_info = {
+ .aiocb_size = sizeof(BlockDriverAIOCBSync),
+ .cancel = bdrv_aio_cancel_em,
+};
+
+static void bdrv_aio_bh_cb(void *opaque)
+{
+ BlockDriverAIOCBSync *acb = opaque;
+
+ if (!acb->is_write)
+ qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
+ qemu_vfree(acb->bounce);
+ acb->common.cb(acb->common.opaque, acb->ret);
+ qemu_bh_delete(acb->bh);
+ acb->bh = NULL;
+ qemu_aio_release(acb);
+}
+
+static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
+ int64_t sector_num,
+ QEMUIOVector *qiov,
+ int nb_sectors,
+ BlockDriverCompletionFunc *cb,
+ void *opaque,
+ int is_write)
+
+{
+ BlockDriverAIOCBSync *acb;
+
+ acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
+ acb->is_write = is_write;
+ acb->qiov = qiov;
+ acb->bounce = qemu_blockalign(bs, qiov->size);
+ acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
+
+ if (is_write) {
+ qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
+ acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
+ } else {
+ acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
+ }
+
+ qemu_bh_schedule(acb->bh);
+
+ return &acb->common;
+}
+
+static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
+ int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
+}
+
+static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
+ int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
+}
+
+
+typedef struct BlockDriverAIOCBCoroutine {
+ BlockDriverAIOCB common;
+ BlockRequest req;
+ bool is_write;
+ bool *done;
+ QEMUBH* bh;
+} BlockDriverAIOCBCoroutine;
+
+static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
+{
+ BlockDriverAIOCBCoroutine *acb =
+ container_of(blockacb, BlockDriverAIOCBCoroutine, common);
+ bool done = false;
+
+ acb->done = &done;
+ while (!done) {
+ qemu_aio_wait();
+ }
+}
+
+static const AIOCBInfo bdrv_em_co_aiocb_info = {
+ .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
+ .cancel = bdrv_aio_co_cancel_em,
+};
+
+static void bdrv_co_em_bh(void *opaque)
+{
+ BlockDriverAIOCBCoroutine *acb = opaque;
+
+ acb->common.cb(acb->common.opaque, acb->req.error);
+
+ if (acb->done) {
+ *acb->done = true;
+ }
+
+ qemu_bh_delete(acb->bh);
+ qemu_aio_release(acb);
+}
+
+/* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
+static void coroutine_fn bdrv_co_do_rw(void *opaque)
+{
+ BlockDriverAIOCBCoroutine *acb = opaque;
+ BlockDriverState *bs = acb->common.bs;
+
+ if (!acb->is_write) {
+ acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
+ acb->req.nb_sectors, acb->req.qiov, 0);
+ } else {
+ acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
+ acb->req.nb_sectors, acb->req.qiov, 0);
+ }
+
+ acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
+ qemu_bh_schedule(acb->bh);
+}
+
+static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
+ int64_t sector_num,
+ QEMUIOVector *qiov,
+ int nb_sectors,
+ BlockDriverCompletionFunc *cb,
+ void *opaque,
+ bool is_write)
+{
+ Coroutine *co;
+ BlockDriverAIOCBCoroutine *acb;
+
+ acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
+ acb->req.sector = sector_num;
+ acb->req.nb_sectors = nb_sectors;
+ acb->req.qiov = qiov;
+ acb->is_write = is_write;
+ acb->done = NULL;
+
+ co = qemu_coroutine_create(bdrv_co_do_rw);
+ qemu_coroutine_enter(co, acb);
+
+ return &acb->common;
+}
+
+static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
+{
+ BlockDriverAIOCBCoroutine *acb = opaque;
+ BlockDriverState *bs = acb->common.bs;
+
+ acb->req.error = bdrv_co_flush(bs);
+ acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
+ qemu_bh_schedule(acb->bh);
+}
+
+BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ trace_bdrv_aio_flush(bs, opaque);
+
+ Coroutine *co;
+ BlockDriverAIOCBCoroutine *acb;
+
+ acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
+ acb->done = NULL;
+
+ co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
+ qemu_coroutine_enter(co, acb);
+
+ return &acb->common;
+}
+
+static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
+{
+ BlockDriverAIOCBCoroutine *acb = opaque;
+ BlockDriverState *bs = acb->common.bs;
+
+ acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
+ acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
+ qemu_bh_schedule(acb->bh);
+}
+
+BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ Coroutine *co;
+ BlockDriverAIOCBCoroutine *acb;
+
+ trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
+
+ acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
+ acb->req.sector = sector_num;
+ acb->req.nb_sectors = nb_sectors;
+ acb->done = NULL;
+ co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
+ qemu_coroutine_enter(co, acb);
+
+ return &acb->common;
+}
+
+void bdrv_init(void)
+{
+ module_call_init(MODULE_INIT_BLOCK);
+}
+
+void bdrv_init_with_whitelist(void)
+{
+ use_bdrv_whitelist = 1;
+ bdrv_init();
+}
+
+void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ BlockDriverAIOCB *acb;
+
+ acb = g_slice_alloc(aiocb_info->aiocb_size);
+ acb->aiocb_info = aiocb_info;
+ acb->bs = bs;
+ acb->cb = cb;
+ acb->opaque = opaque;
+ return acb;
+}
+
+void qemu_aio_release(void *p)
+{
+ BlockDriverAIOCB *acb = p;
+ g_slice_free1(acb->aiocb_info->aiocb_size, acb);
+}
+
+/**************************************************************/
+/* Coroutine block device emulation */
+
+typedef struct CoroutineIOCompletion {
+ Coroutine *coroutine;
+ int ret;
+} CoroutineIOCompletion;
+
+static void bdrv_co_io_em_complete(void *opaque, int ret)
+{
+ CoroutineIOCompletion *co = opaque;
+
+ co->ret = ret;
+ qemu_coroutine_enter(co->coroutine, NULL);
+}
+
+static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, QEMUIOVector *iov,
+ bool is_write)
+{
+ CoroutineIOCompletion co = {
+ .coroutine = qemu_coroutine_self(),
+ };
+ BlockDriverAIOCB *acb;
+
+ if (is_write) {
+ acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
+ bdrv_co_io_em_complete, &co);
+ } else {
+ acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
+ bdrv_co_io_em_complete, &co);
+ }
+
+ trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
+ if (!acb) {
+ return -EIO;
+ }
+ qemu_coroutine_yield();
+
+ return co.ret;
+}
+
+static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors,
+ QEMUIOVector *iov)
+{
+ return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
+}
+
+static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors,
+ QEMUIOVector *iov)
+{
+ return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
+}
+
+static void coroutine_fn bdrv_flush_co_entry(void *opaque)
+{
+ RwCo *rwco = opaque;
+
+ rwco->ret = bdrv_co_flush(rwco->bs);
+}
+
+int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
+{
+ int ret;
+
+ if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
+ return 0;
+ }
+
+ /* Write back cached data to the OS even with cache=unsafe */
+ BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
+ if (bs->drv->bdrv_co_flush_to_os) {
+ ret = bs->drv->bdrv_co_flush_to_os(bs);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ /* But don't actually force it to the disk with cache=unsafe */
+ if (bs->open_flags & BDRV_O_NO_FLUSH) {
+ goto flush_parent;
+ }
+
+ BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
+ if (bs->drv->bdrv_co_flush_to_disk) {
+ ret = bs->drv->bdrv_co_flush_to_disk(bs);
+ } else if (bs->drv->bdrv_aio_flush) {
+ BlockDriverAIOCB *acb;
+ CoroutineIOCompletion co = {
+ .coroutine = qemu_coroutine_self(),
+ };
+
+ acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
+ if (acb == NULL) {
+ ret = -EIO;
+ } else {
+ qemu_coroutine_yield();
+ ret = co.ret;
+ }
+ } else {
+ /*
+ * Some block drivers always operate in either writethrough or unsafe
+ * mode and don't support bdrv_flush therefore. Usually qemu doesn't
+ * know how the server works (because the behaviour is hardcoded or
+ * depends on server-side configuration), so we can't ensure that
+ * everything is safe on disk. Returning an error doesn't work because
+ * that would break guests even if the server operates in writethrough
+ * mode.
+ *
+ * Let's hope the user knows what he's doing.
+ */
+ ret = 0;
+ }
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
+ * in the case of cache=unsafe, so there are no useless flushes.
+ */
+flush_parent:
+ return bdrv_co_flush(bs->file);
+}
+
+void bdrv_invalidate_cache(BlockDriverState *bs)
+{
+ if (bs->drv && bs->drv->bdrv_invalidate_cache) {
+ bs->drv->bdrv_invalidate_cache(bs);
+ }
+}
+
+void bdrv_invalidate_cache_all(void)
+{
+ BlockDriverState *bs;
+
+ QTAILQ_FOREACH(bs, &bdrv_states, list) {
+ bdrv_invalidate_cache(bs);
+ }
+}
+
+void bdrv_clear_incoming_migration_all(void)
+{
+ BlockDriverState *bs;
+
+ QTAILQ_FOREACH(bs, &bdrv_states, list) {
+ bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
+ }
+}
+
+int bdrv_flush(BlockDriverState *bs)
+{
+ Coroutine *co;
+ RwCo rwco = {
+ .bs = bs,
+ .ret = NOT_DONE,
+ };
+
+ if (qemu_in_coroutine()) {
+ /* Fast-path if already in coroutine context */
+ bdrv_flush_co_entry(&rwco);
+ } else {
+ co = qemu_coroutine_create(bdrv_flush_co_entry);
+ qemu_coroutine_enter(co, &rwco);
+ while (rwco.ret == NOT_DONE) {
+ qemu_aio_wait();
+ }
+ }
+
+ return rwco.ret;
+}
+
+static void coroutine_fn bdrv_discard_co_entry(void *opaque)
+{
+ RwCo *rwco = opaque;
+
+ rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
+}
+
+int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors)
+{
+ if (!bs->drv) {
+ return -ENOMEDIUM;
+ } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
+ return -EIO;
+ } else if (bs->read_only) {
+ return -EROFS;
+ }
+
+ if (bs->dirty_bitmap) {
+ bdrv_reset_dirty(bs, sector_num, nb_sectors);
+ }
+
+ /* Do nothing if disabled. */
+ if (!(bs->open_flags & BDRV_O_UNMAP)) {
+ return 0;
+ }
+
+ if (bs->drv->bdrv_co_discard) {
+ return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
+ } else if (bs->drv->bdrv_aio_discard) {
+ BlockDriverAIOCB *acb;
+ CoroutineIOCompletion co = {
+ .coroutine = qemu_coroutine_self(),
+ };
+
+ acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
+ bdrv_co_io_em_complete, &co);
+ if (acb == NULL) {
+ return -EIO;
+ } else {
+ qemu_coroutine_yield();
+ return co.ret;
+ }
+ } else {
+ return 0;
+ }
+}
+
+int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
+{
+ Coroutine *co;
+ RwCo rwco = {
+ .bs = bs,
+ .sector_num = sector_num,
+ .nb_sectors = nb_sectors,
+ .ret = NOT_DONE,
+ };
+
+ if (qemu_in_coroutine()) {
+ /* Fast-path if already in coroutine context */
+ bdrv_discard_co_entry(&rwco);
+ } else {
+ co = qemu_coroutine_create(bdrv_discard_co_entry);
+ qemu_coroutine_enter(co, &rwco);
+ while (rwco.ret == NOT_DONE) {
+ qemu_aio_wait();
+ }
+ }
+
+ return rwco.ret;
+}
+
+/**************************************************************/
+/* removable device support */
+
+/**
+ * Return TRUE if the media is present
+ */
+int bdrv_is_inserted(BlockDriverState *bs)
+{
+ BlockDriver *drv = bs->drv;
+
+ if (!drv)
+ return 0;
+ if (!drv->bdrv_is_inserted)
+ return 1;
+ return drv->bdrv_is_inserted(bs);
+}
+
+/**
+ * Return whether the media changed since the last call to this
+ * function, or -ENOTSUP if we don't know. Most drivers don't know.
+ */
+int bdrv_media_changed(BlockDriverState *bs)
+{
+ BlockDriver *drv = bs->drv;
+
+ if (drv && drv->bdrv_media_changed) {
+ return drv->bdrv_media_changed(bs);
+ }
+ return -ENOTSUP;
+}
+
+/**
+ * If eject_flag is TRUE, eject the media. Otherwise, close the tray
+ */
+void bdrv_eject(BlockDriverState *bs, bool eject_flag)
+{
+ BlockDriver *drv = bs->drv;
+
+ if (drv && drv->bdrv_eject) {
+ drv->bdrv_eject(bs, eject_flag);
+ }
+
+ if (bs->device_name[0] != '\0') {
+ bdrv_emit_qmp_eject_event(bs, eject_flag);
+ }
+}
+
+/**
+ * Lock or unlock the media (if it is locked, the user won't be able
+ * to eject it manually).
+ */
+void bdrv_lock_medium(BlockDriverState *bs, bool locked)
+{
+ BlockDriver *drv = bs->drv;
+
+ trace_bdrv_lock_medium(bs, locked);
+
+ if (drv && drv->bdrv_lock_medium) {
+ drv->bdrv_lock_medium(bs, locked);
+ }
+}
+
+/* needed for generic scsi interface */
+
+int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
+{
+ BlockDriver *drv = bs->drv;
+
+ if (drv && drv->bdrv_ioctl)
+ return drv->bdrv_ioctl(bs, req, buf);
+ return -ENOTSUP;
+}
+
+BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
+ unsigned long int req, void *buf,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ BlockDriver *drv = bs->drv;
+
+ if (drv && drv->bdrv_aio_ioctl)
+ return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
+ return NULL;
+}
+
+void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
+{
+ bs->buffer_alignment = align;
+}
+
+void *qemu_blockalign(BlockDriverState *bs, size_t size)
+{
+ return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
+}
+
+/*
+ * Check if all memory in this vector is sector aligned.
+ */
+bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
+{
+ int i;
+
+ for (i = 0; i < qiov->niov; i++) {
+ if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity)
+{
+ int64_t bitmap_size;
+
+ assert((granularity & (granularity - 1)) == 0);
+
+ if (granularity) {
+ granularity >>= BDRV_SECTOR_BITS;
+ assert(!bs->dirty_bitmap);
+ bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS);
+ bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1);
+ } else {
+ if (bs->dirty_bitmap) {
+ hbitmap_free(bs->dirty_bitmap);
+ bs->dirty_bitmap = NULL;
+ }
+ }
+}
+
+int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
+{
+ if (bs->dirty_bitmap) {
+ return hbitmap_get(bs->dirty_bitmap, sector);
+ } else {
+ return 0;
+ }
+}
+
+void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi)
+{
+ hbitmap_iter_init(hbi, bs->dirty_bitmap, 0);
+}
+
+void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
+ int nr_sectors)
+{
+ hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors);
+}
+
+void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
+ int nr_sectors)
+{
+ hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors);
+}
+
+int64_t bdrv_get_dirty_count(BlockDriverState *bs)
+{
+ if (bs->dirty_bitmap) {
+ return hbitmap_count(bs->dirty_bitmap);
+ } else {
+ return 0;
+ }
+}
+
+void bdrv_set_in_use(BlockDriverState *bs, int in_use)
+{
+ assert(bs->in_use != in_use);
+ bs->in_use = in_use;
+}
+
+int bdrv_in_use(BlockDriverState *bs)
+{
+ return bs->in_use;
+}
+
+void bdrv_iostatus_enable(BlockDriverState *bs)
+{
+ bs->iostatus_enabled = true;
+ bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
+}
+
+/* The I/O status is only enabled if the drive explicitly
+ * enables it _and_ the VM is configured to stop on errors */
+bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
+{
+ return (bs->iostatus_enabled &&
+ (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
+ bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
+ bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
+}
+
+void bdrv_iostatus_disable(BlockDriverState *bs)
+{
+ bs->iostatus_enabled = false;
+}
+
+void bdrv_iostatus_reset(BlockDriverState *bs)
+{
+ if (bdrv_iostatus_is_enabled(bs)) {
+ bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
+ if (bs->job) {
+ block_job_iostatus_reset(bs->job);
+ }
+ }
+}
+
+void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
+{
+ assert(bdrv_iostatus_is_enabled(bs));
+ if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
+ bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
+ BLOCK_DEVICE_IO_STATUS_FAILED;
+ }
+}
+
+void
+bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
+ enum BlockAcctType type)
+{
+ assert(type < BDRV_MAX_IOTYPE);
+
+ cookie->bytes = bytes;
+ cookie->start_time_ns = get_clock();
+ cookie->type = type;
+}
+
+void
+bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
+{
+ assert(cookie->type < BDRV_MAX_IOTYPE);
+
+ bs->nr_bytes[cookie->type] += cookie->bytes;
+ bs->nr_ops[cookie->type]++;
+ bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
+}
+
+void bdrv_img_create(const char *filename, const char *fmt,
+ const char *base_filename, const char *base_fmt,
+ char *options, uint64_t img_size, int flags,
+ Error **errp, bool quiet)
+{
+ QEMUOptionParameter *param = NULL, *create_options = NULL;
+ QEMUOptionParameter *backing_fmt, *backing_file, *size;
+ BlockDriverState *bs = NULL;
+ BlockDriver *drv, *proto_drv;
+ BlockDriver *backing_drv = NULL;
+ int ret = 0;
+
+ /* Find driver and parse its options */
+ drv = bdrv_find_format(fmt);
+ if (!drv) {
+ error_setg(errp, "Unknown file format '%s'", fmt);
+ return;
+ }
+
+ proto_drv = bdrv_find_protocol(filename, true);
+ if (!proto_drv) {
+ error_setg(errp, "Unknown protocol '%s'", filename);
+ return;
+ }
+
+ create_options = append_option_parameters(create_options,
+ drv->create_options);
+ create_options = append_option_parameters(create_options,
+ proto_drv->create_options);
+
+ /* Create parameter list with default values */
+ param = parse_option_parameters("", create_options, param);
+
+ set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
+
+ /* Parse -o options */
+ if (options) {
+ param = parse_option_parameters(options, create_options, param);
+ if (param == NULL) {
+ error_setg(errp, "Invalid options for file format '%s'.", fmt);
+ goto out;
+ }
+ }
+
+ if (base_filename) {
+ if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
+ base_filename)) {
+ error_setg(errp, "Backing file not supported for file format '%s'",
+ fmt);
+ goto out;
+ }
+ }
+
+ if (base_fmt) {
+ if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
+ error_setg(errp, "Backing file format not supported for file "
+ "format '%s'", fmt);
+ goto out;
+ }
+ }
+
+ backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
+ if (backing_file && backing_file->value.s) {
+ if (!strcmp(filename, backing_file->value.s)) {
+ error_setg(errp, "Error: Trying to create an image with the "
+ "same filename as the backing file");
+ goto out;
+ }
+ }
+
+ backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
+ if (backing_fmt && backing_fmt->value.s) {
+ backing_drv = bdrv_find_format(backing_fmt->value.s);
+ if (!backing_drv) {
+ error_setg(errp, "Unknown backing file format '%s'",
+ backing_fmt->value.s);
+ goto out;
+ }
+ }
+
+ // The size for the image must always be specified, with one exception:
+ // If we are using a backing file, we can obtain the size from there
+ size = get_option_parameter(param, BLOCK_OPT_SIZE);
+ if (size && size->value.n == -1) {
+ if (backing_file && backing_file->value.s) {
+ uint64_t size;
+ char buf[32];
+ int back_flags;
+
+ /* backing files always opened read-only */
+ back_flags =
+ flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
+
+ bs = bdrv_new("");
+
+ ret = bdrv_open(bs, backing_file->value.s, NULL, back_flags,
+ backing_drv);
+ if (ret < 0) {
+ error_setg_errno(errp, -ret, "Could not open '%s'",
+ backing_file->value.s);
+ goto out;
+ }
+ bdrv_get_geometry(bs, &size);
+ size *= 512;
+
+ snprintf(buf, sizeof(buf), "%" PRId64, size);
+ set_option_parameter(param, BLOCK_OPT_SIZE, buf);
+ } else {
+ error_setg(errp, "Image creation needs a size parameter");
+ goto out;
+ }
+ }
+
+ if (!quiet) {
+ printf("Formatting '%s', fmt=%s ", filename, fmt);
+ print_option_parameters(param);
+ puts("");
+ }
+ ret = bdrv_create(drv, filename, param);
+ if (ret < 0) {
+ if (ret == -ENOTSUP) {
+ error_setg(errp,"Formatting or formatting option not supported for "
+ "file format '%s'", fmt);
+ } else if (ret == -EFBIG) {
+ const char *cluster_size_hint = "";
+ if (get_option_parameter(create_options, BLOCK_OPT_CLUSTER_SIZE)) {
+ cluster_size_hint = " (try using a larger cluster size)";
+ }
+ error_setg(errp, "The image size is too large for file format '%s'%s",
+ fmt, cluster_size_hint);
+ } else {
+ error_setg(errp, "%s: error while creating %s: %s", filename, fmt,
+ strerror(-ret));
+ }
+ }
+
+out:
+ free_option_parameters(create_options);
+ free_option_parameters(param);
+
+ if (bs) {
+ bdrv_delete(bs);
+ }
+}
+
+AioContext *bdrv_get_aio_context(BlockDriverState *bs)
+{
+ /* Currently BlockDriverState always uses the main loop AioContext */
+ return qemu_get_aio_context();
+}
+
+void bdrv_add_before_write_notifier(BlockDriverState *bs,
+ NotifierWithReturn *notifier)
+{
+ notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
+}
diff --git a/contrib/qemu/block/qcow.c b/contrib/qemu/block/qcow.c
new file mode 100644
index 00000000000..5239bd68f1c
--- /dev/null
+++ b/contrib/qemu/block/qcow.c
@@ -0,0 +1,914 @@
+/*
+ * Block driver for the QCOW format
+ *
+ * Copyright (c) 2004-2006 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#include "qemu-common.h"
+#include "block/block_int.h"
+#include "qemu/module.h"
+#include <zlib.h>
+#include "qemu/aes.h"
+#include "migration/migration.h"
+
+/**************************************************************/
+/* QEMU COW block driver with compression and encryption support */
+
+#define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb)
+#define QCOW_VERSION 1
+
+#define QCOW_CRYPT_NONE 0
+#define QCOW_CRYPT_AES 1
+
+#define QCOW_OFLAG_COMPRESSED (1LL << 63)
+
+typedef struct QCowHeader {
+ uint32_t magic;
+ uint32_t version;
+ uint64_t backing_file_offset;
+ uint32_t backing_file_size;
+ uint32_t mtime;
+ uint64_t size; /* in bytes */
+ uint8_t cluster_bits;
+ uint8_t l2_bits;
+ uint32_t crypt_method;
+ uint64_t l1_table_offset;
+} QCowHeader;
+
+#define L2_CACHE_SIZE 16
+
+typedef struct BDRVQcowState {
+ int cluster_bits;
+ int cluster_size;
+ int cluster_sectors;
+ int l2_bits;
+ int l2_size;
+ int l1_size;
+ uint64_t cluster_offset_mask;
+ uint64_t l1_table_offset;
+ uint64_t *l1_table;
+ uint64_t *l2_cache;
+ uint64_t l2_cache_offsets[L2_CACHE_SIZE];
+ uint32_t l2_cache_counts[L2_CACHE_SIZE];
+ uint8_t *cluster_cache;
+ uint8_t *cluster_data;
+ uint64_t cluster_cache_offset;
+ uint32_t crypt_method; /* current crypt method, 0 if no key yet */
+ uint32_t crypt_method_header;
+ AES_KEY aes_encrypt_key;
+ AES_KEY aes_decrypt_key;
+ CoMutex lock;
+ Error *migration_blocker;
+} BDRVQcowState;
+
+static int decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset);
+
+static int qcow_probe(const uint8_t *buf, int buf_size, const char *filename)
+{
+ const QCowHeader *cow_header = (const void *)buf;
+
+ if (buf_size >= sizeof(QCowHeader) &&
+ be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
+ be32_to_cpu(cow_header->version) == QCOW_VERSION)
+ return 100;
+ else
+ return 0;
+}
+
+static int qcow_open(BlockDriverState *bs, QDict *options, int flags)
+{
+ BDRVQcowState *s = bs->opaque;
+ int len, i, shift, ret;
+ QCowHeader header;
+
+ ret = bdrv_pread(bs->file, 0, &header, sizeof(header));
+ if (ret < 0) {
+ goto fail;
+ }
+ be32_to_cpus(&header.magic);
+ be32_to_cpus(&header.version);
+ be64_to_cpus(&header.backing_file_offset);
+ be32_to_cpus(&header.backing_file_size);
+ be32_to_cpus(&header.mtime);
+ be64_to_cpus(&header.size);
+ be32_to_cpus(&header.crypt_method);
+ be64_to_cpus(&header.l1_table_offset);
+
+ if (header.magic != QCOW_MAGIC) {
+ ret = -EMEDIUMTYPE;
+ goto fail;
+ }
+ if (header.version != QCOW_VERSION) {
+ char version[64];
+ snprintf(version, sizeof(version), "QCOW version %d", header.version);
+ qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
+ bs->device_name, "qcow", version);
+ ret = -ENOTSUP;
+ goto fail;
+ }
+
+ if (header.size <= 1 || header.cluster_bits < 9) {
+ ret = -EINVAL;
+ goto fail;
+ }
+ if (header.crypt_method > QCOW_CRYPT_AES) {
+ ret = -EINVAL;
+ goto fail;
+ }
+ s->crypt_method_header = header.crypt_method;
+ if (s->crypt_method_header) {
+ bs->encrypted = 1;
+ }
+ s->cluster_bits = header.cluster_bits;
+ s->cluster_size = 1 << s->cluster_bits;
+ s->cluster_sectors = 1 << (s->cluster_bits - 9);
+ s->l2_bits = header.l2_bits;
+ s->l2_size = 1 << s->l2_bits;
+ bs->total_sectors = header.size / 512;
+ s->cluster_offset_mask = (1LL << (63 - s->cluster_bits)) - 1;
+
+ /* read the level 1 table */
+ shift = s->cluster_bits + s->l2_bits;
+ s->l1_size = (header.size + (1LL << shift) - 1) >> shift;
+
+ s->l1_table_offset = header.l1_table_offset;
+ s->l1_table = g_malloc(s->l1_size * sizeof(uint64_t));
+
+ ret = bdrv_pread(bs->file, s->l1_table_offset, s->l1_table,
+ s->l1_size * sizeof(uint64_t));
+ if (ret < 0) {
+ goto fail;
+ }
+
+ for(i = 0;i < s->l1_size; i++) {
+ be64_to_cpus(&s->l1_table[i]);
+ }
+ /* alloc L2 cache */
+ s->l2_cache = g_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
+ s->cluster_cache = g_malloc(s->cluster_size);
+ s->cluster_data = g_malloc(s->cluster_size);
+ s->cluster_cache_offset = -1;
+
+ /* read the backing file name */
+ if (header.backing_file_offset != 0) {
+ len = header.backing_file_size;
+ if (len > 1023) {
+ len = 1023;
+ }
+ ret = bdrv_pread(bs->file, header.backing_file_offset,
+ bs->backing_file, len);
+ if (ret < 0) {
+ goto fail;
+ }
+ bs->backing_file[len] = '\0';
+ }
+
+ /* Disable migration when qcow images are used */
+ error_set(&s->migration_blocker,
+ QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
+ "qcow", bs->device_name, "live migration");
+ migrate_add_blocker(s->migration_blocker);
+
+ qemu_co_mutex_init(&s->lock);
+ return 0;
+
+ fail:
+ g_free(s->l1_table);
+ g_free(s->l2_cache);
+ g_free(s->cluster_cache);
+ g_free(s->cluster_data);
+ return ret;
+}
+
+
+/* We have nothing to do for QCOW reopen, stubs just return
+ * success */
+static int qcow_reopen_prepare(BDRVReopenState *state,
+ BlockReopenQueue *queue, Error **errp)
+{
+ return 0;
+}
+
+static int qcow_set_key(BlockDriverState *bs, const char *key)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint8_t keybuf[16];
+ int len, i;
+
+ memset(keybuf, 0, 16);
+ len = strlen(key);
+ if (len > 16)
+ len = 16;
+ /* XXX: we could compress the chars to 7 bits to increase
+ entropy */
+ for(i = 0;i < len;i++) {
+ keybuf[i] = key[i];
+ }
+ s->crypt_method = s->crypt_method_header;
+
+ if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0)
+ return -1;
+ if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0)
+ return -1;
+ return 0;
+}
+
+/* The crypt function is compatible with the linux cryptoloop
+ algorithm for < 4 GB images. NOTE: out_buf == in_buf is
+ supported */
+static void encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
+ uint8_t *out_buf, const uint8_t *in_buf,
+ int nb_sectors, int enc,
+ const AES_KEY *key)
+{
+ union {
+ uint64_t ll[2];
+ uint8_t b[16];
+ } ivec;
+ int i;
+
+ for(i = 0; i < nb_sectors; i++) {
+ ivec.ll[0] = cpu_to_le64(sector_num);
+ ivec.ll[1] = 0;
+ AES_cbc_encrypt(in_buf, out_buf, 512, key,
+ ivec.b, enc);
+ sector_num++;
+ in_buf += 512;
+ out_buf += 512;
+ }
+}
+
+/* 'allocate' is:
+ *
+ * 0 to not allocate.
+ *
+ * 1 to allocate a normal cluster (for sector indexes 'n_start' to
+ * 'n_end')
+ *
+ * 2 to allocate a compressed cluster of size
+ * 'compressed_size'. 'compressed_size' must be > 0 and <
+ * cluster_size
+ *
+ * return 0 if not allocated.
+ */
+static uint64_t get_cluster_offset(BlockDriverState *bs,
+ uint64_t offset, int allocate,
+ int compressed_size,
+ int n_start, int n_end)
+{
+ BDRVQcowState *s = bs->opaque;
+ int min_index, i, j, l1_index, l2_index;
+ uint64_t l2_offset, *l2_table, cluster_offset, tmp;
+ uint32_t min_count;
+ int new_l2_table;
+
+ l1_index = offset >> (s->l2_bits + s->cluster_bits);
+ l2_offset = s->l1_table[l1_index];
+ new_l2_table = 0;
+ if (!l2_offset) {
+ if (!allocate)
+ return 0;
+ /* allocate a new l2 entry */
+ l2_offset = bdrv_getlength(bs->file);
+ /* round to cluster size */
+ l2_offset = (l2_offset + s->cluster_size - 1) & ~(s->cluster_size - 1);
+ /* update the L1 entry */
+ s->l1_table[l1_index] = l2_offset;
+ tmp = cpu_to_be64(l2_offset);
+ if (bdrv_pwrite_sync(bs->file,
+ s->l1_table_offset + l1_index * sizeof(tmp),
+ &tmp, sizeof(tmp)) < 0)
+ return 0;
+ new_l2_table = 1;
+ }
+ for(i = 0; i < L2_CACHE_SIZE; i++) {
+ if (l2_offset == s->l2_cache_offsets[i]) {
+ /* increment the hit count */
+ if (++s->l2_cache_counts[i] == 0xffffffff) {
+ for(j = 0; j < L2_CACHE_SIZE; j++) {
+ s->l2_cache_counts[j] >>= 1;
+ }
+ }
+ l2_table = s->l2_cache + (i << s->l2_bits);
+ goto found;
+ }
+ }
+ /* not found: load a new entry in the least used one */
+ min_index = 0;
+ min_count = 0xffffffff;
+ for(i = 0; i < L2_CACHE_SIZE; i++) {
+ if (s->l2_cache_counts[i] < min_count) {
+ min_count = s->l2_cache_counts[i];
+ min_index = i;
+ }
+ }
+ l2_table = s->l2_cache + (min_index << s->l2_bits);
+ if (new_l2_table) {
+ memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
+ if (bdrv_pwrite_sync(bs->file, l2_offset, l2_table,
+ s->l2_size * sizeof(uint64_t)) < 0)
+ return 0;
+ } else {
+ if (bdrv_pread(bs->file, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
+ s->l2_size * sizeof(uint64_t))
+ return 0;
+ }
+ s->l2_cache_offsets[min_index] = l2_offset;
+ s->l2_cache_counts[min_index] = 1;
+ found:
+ l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
+ cluster_offset = be64_to_cpu(l2_table[l2_index]);
+ if (!cluster_offset ||
+ ((cluster_offset & QCOW_OFLAG_COMPRESSED) && allocate == 1)) {
+ if (!allocate)
+ return 0;
+ /* allocate a new cluster */
+ if ((cluster_offset & QCOW_OFLAG_COMPRESSED) &&
+ (n_end - n_start) < s->cluster_sectors) {
+ /* if the cluster is already compressed, we must
+ decompress it in the case it is not completely
+ overwritten */
+ if (decompress_cluster(bs, cluster_offset) < 0)
+ return 0;
+ cluster_offset = bdrv_getlength(bs->file);
+ cluster_offset = (cluster_offset + s->cluster_size - 1) &
+ ~(s->cluster_size - 1);
+ /* write the cluster content */
+ if (bdrv_pwrite(bs->file, cluster_offset, s->cluster_cache, s->cluster_size) !=
+ s->cluster_size)
+ return -1;
+ } else {
+ cluster_offset = bdrv_getlength(bs->file);
+ if (allocate == 1) {
+ /* round to cluster size */
+ cluster_offset = (cluster_offset + s->cluster_size - 1) &
+ ~(s->cluster_size - 1);
+ bdrv_truncate(bs->file, cluster_offset + s->cluster_size);
+ /* if encrypted, we must initialize the cluster
+ content which won't be written */
+ if (s->crypt_method &&
+ (n_end - n_start) < s->cluster_sectors) {
+ uint64_t start_sect;
+ start_sect = (offset & ~(s->cluster_size - 1)) >> 9;
+ memset(s->cluster_data + 512, 0x00, 512);
+ for(i = 0; i < s->cluster_sectors; i++) {
+ if (i < n_start || i >= n_end) {
+ encrypt_sectors(s, start_sect + i,
+ s->cluster_data,
+ s->cluster_data + 512, 1, 1,
+ &s->aes_encrypt_key);
+ if (bdrv_pwrite(bs->file, cluster_offset + i * 512,
+ s->cluster_data, 512) != 512)
+ return -1;
+ }
+ }
+ }
+ } else if (allocate == 2) {
+ cluster_offset |= QCOW_OFLAG_COMPRESSED |
+ (uint64_t)compressed_size << (63 - s->cluster_bits);
+ }
+ }
+ /* update L2 table */
+ tmp = cpu_to_be64(cluster_offset);
+ l2_table[l2_index] = tmp;
+ if (bdrv_pwrite_sync(bs->file, l2_offset + l2_index * sizeof(tmp),
+ &tmp, sizeof(tmp)) < 0)
+ return 0;
+ }
+ return cluster_offset;
+}
+
+static int coroutine_fn qcow_co_is_allocated(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, int *pnum)
+{
+ BDRVQcowState *s = bs->opaque;
+ int index_in_cluster, n;
+ uint64_t cluster_offset;
+
+ qemu_co_mutex_lock(&s->lock);
+ cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
+ qemu_co_mutex_unlock(&s->lock);
+ index_in_cluster = sector_num & (s->cluster_sectors - 1);
+ n = s->cluster_sectors - index_in_cluster;
+ if (n > nb_sectors)
+ n = nb_sectors;
+ *pnum = n;
+ return (cluster_offset != 0);
+}
+
+static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
+ const uint8_t *buf, int buf_size)
+{
+ z_stream strm1, *strm = &strm1;
+ int ret, out_len;
+
+ memset(strm, 0, sizeof(*strm));
+
+ strm->next_in = (uint8_t *)buf;
+ strm->avail_in = buf_size;
+ strm->next_out = out_buf;
+ strm->avail_out = out_buf_size;
+
+ ret = inflateInit2(strm, -12);
+ if (ret != Z_OK)
+ return -1;
+ ret = inflate(strm, Z_FINISH);
+ out_len = strm->next_out - out_buf;
+ if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
+ out_len != out_buf_size) {
+ inflateEnd(strm);
+ return -1;
+ }
+ inflateEnd(strm);
+ return 0;
+}
+
+static int decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
+{
+ BDRVQcowState *s = bs->opaque;
+ int ret, csize;
+ uint64_t coffset;
+
+ coffset = cluster_offset & s->cluster_offset_mask;
+ if (s->cluster_cache_offset != coffset) {
+ csize = cluster_offset >> (63 - s->cluster_bits);
+ csize &= (s->cluster_size - 1);
+ ret = bdrv_pread(bs->file, coffset, s->cluster_data, csize);
+ if (ret != csize)
+ return -1;
+ if (decompress_buffer(s->cluster_cache, s->cluster_size,
+ s->cluster_data, csize) < 0) {
+ return -1;
+ }
+ s->cluster_cache_offset = coffset;
+ }
+ return 0;
+}
+
+static coroutine_fn int qcow_co_readv(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, QEMUIOVector *qiov)
+{
+ BDRVQcowState *s = bs->opaque;
+ int index_in_cluster;
+ int ret = 0, n;
+ uint64_t cluster_offset;
+ struct iovec hd_iov;
+ QEMUIOVector hd_qiov;
+ uint8_t *buf;
+ void *orig_buf;
+
+ if (qiov->niov > 1) {
+ buf = orig_buf = qemu_blockalign(bs, qiov->size);
+ } else {
+ orig_buf = NULL;
+ buf = (uint8_t *)qiov->iov->iov_base;
+ }
+
+ qemu_co_mutex_lock(&s->lock);
+
+ while (nb_sectors != 0) {
+ /* prepare next request */
+ cluster_offset = get_cluster_offset(bs, sector_num << 9,
+ 0, 0, 0, 0);
+ index_in_cluster = sector_num & (s->cluster_sectors - 1);
+ n = s->cluster_sectors - index_in_cluster;
+ if (n > nb_sectors) {
+ n = nb_sectors;
+ }
+
+ if (!cluster_offset) {
+ if (bs->backing_hd) {
+ /* read from the base image */
+ hd_iov.iov_base = (void *)buf;
+ hd_iov.iov_len = n * 512;
+ qemu_iovec_init_external(&hd_qiov, &hd_iov, 1);
+ qemu_co_mutex_unlock(&s->lock);
+ ret = bdrv_co_readv(bs->backing_hd, sector_num,
+ n, &hd_qiov);
+ qemu_co_mutex_lock(&s->lock);
+ if (ret < 0) {
+ goto fail;
+ }
+ } else {
+ /* Note: in this case, no need to wait */
+ memset(buf, 0, 512 * n);
+ }
+ } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
+ /* add AIO support for compressed blocks ? */
+ if (decompress_cluster(bs, cluster_offset) < 0) {
+ goto fail;
+ }
+ memcpy(buf,
+ s->cluster_cache + index_in_cluster * 512, 512 * n);
+ } else {
+ if ((cluster_offset & 511) != 0) {
+ goto fail;
+ }
+ hd_iov.iov_base = (void *)buf;
+ hd_iov.iov_len = n * 512;
+ qemu_iovec_init_external(&hd_qiov, &hd_iov, 1);
+ qemu_co_mutex_unlock(&s->lock);
+ ret = bdrv_co_readv(bs->file,
+ (cluster_offset >> 9) + index_in_cluster,
+ n, &hd_qiov);
+ qemu_co_mutex_lock(&s->lock);
+ if (ret < 0) {
+ break;
+ }
+ if (s->crypt_method) {
+ encrypt_sectors(s, sector_num, buf, buf,
+ n, 0,
+ &s->aes_decrypt_key);
+ }
+ }
+ ret = 0;
+
+ nb_sectors -= n;
+ sector_num += n;
+ buf += n * 512;
+ }
+
+done:
+ qemu_co_mutex_unlock(&s->lock);
+
+ if (qiov->niov > 1) {
+ qemu_iovec_from_buf(qiov, 0, orig_buf, qiov->size);
+ qemu_vfree(orig_buf);
+ }
+
+ return ret;
+
+fail:
+ ret = -EIO;
+ goto done;
+}
+
+static coroutine_fn int qcow_co_writev(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, QEMUIOVector *qiov)
+{
+ BDRVQcowState *s = bs->opaque;
+ int index_in_cluster;
+ uint64_t cluster_offset;
+ const uint8_t *src_buf;
+ int ret = 0, n;
+ uint8_t *cluster_data = NULL;
+ struct iovec hd_iov;
+ QEMUIOVector hd_qiov;
+ uint8_t *buf;
+ void *orig_buf;
+
+ s->cluster_cache_offset = -1; /* disable compressed cache */
+
+ if (qiov->niov > 1) {
+ buf = orig_buf = qemu_blockalign(bs, qiov->size);
+ qemu_iovec_to_buf(qiov, 0, buf, qiov->size);
+ } else {
+ orig_buf = NULL;
+ buf = (uint8_t *)qiov->iov->iov_base;
+ }
+
+ qemu_co_mutex_lock(&s->lock);
+
+ while (nb_sectors != 0) {
+
+ index_in_cluster = sector_num & (s->cluster_sectors - 1);
+ n = s->cluster_sectors - index_in_cluster;
+ if (n > nb_sectors) {
+ n = nb_sectors;
+ }
+ cluster_offset = get_cluster_offset(bs, sector_num << 9, 1, 0,
+ index_in_cluster,
+ index_in_cluster + n);
+ if (!cluster_offset || (cluster_offset & 511) != 0) {
+ ret = -EIO;
+ break;
+ }
+ if (s->crypt_method) {
+ if (!cluster_data) {
+ cluster_data = g_malloc0(s->cluster_size);
+ }
+ encrypt_sectors(s, sector_num, cluster_data, buf,
+ n, 1, &s->aes_encrypt_key);
+ src_buf = cluster_data;
+ } else {
+ src_buf = buf;
+ }
+
+ hd_iov.iov_base = (void *)src_buf;
+ hd_iov.iov_len = n * 512;
+ qemu_iovec_init_external(&hd_qiov, &hd_iov, 1);
+ qemu_co_mutex_unlock(&s->lock);
+ ret = bdrv_co_writev(bs->file,
+ (cluster_offset >> 9) + index_in_cluster,
+ n, &hd_qiov);
+ qemu_co_mutex_lock(&s->lock);
+ if (ret < 0) {
+ break;
+ }
+ ret = 0;
+
+ nb_sectors -= n;
+ sector_num += n;
+ buf += n * 512;
+ }
+ qemu_co_mutex_unlock(&s->lock);
+
+ if (qiov->niov > 1) {
+ qemu_vfree(orig_buf);
+ }
+ g_free(cluster_data);
+
+ return ret;
+}
+
+static void qcow_close(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+
+ g_free(s->l1_table);
+ g_free(s->l2_cache);
+ g_free(s->cluster_cache);
+ g_free(s->cluster_data);
+
+ migrate_del_blocker(s->migration_blocker);
+ error_free(s->migration_blocker);
+}
+
+static int qcow_create(const char *filename, QEMUOptionParameter *options)
+{
+ int header_size, backing_filename_len, l1_size, shift, i;
+ QCowHeader header;
+ uint8_t *tmp;
+ int64_t total_size = 0;
+ const char *backing_file = NULL;
+ int flags = 0;
+ int ret;
+ BlockDriverState *qcow_bs;
+
+ /* Read out options */
+ while (options && options->name) {
+ if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
+ total_size = options->value.n / 512;
+ } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
+ backing_file = options->value.s;
+ } else if (!strcmp(options->name, BLOCK_OPT_ENCRYPT)) {
+ flags |= options->value.n ? BLOCK_FLAG_ENCRYPT : 0;
+ }
+ options++;
+ }
+
+ ret = bdrv_create_file(filename, options);
+ if (ret < 0) {
+ return ret;
+ }
+
+ ret = bdrv_file_open(&qcow_bs, filename, NULL, BDRV_O_RDWR);
+ if (ret < 0) {
+ return ret;
+ }
+
+ ret = bdrv_truncate(qcow_bs, 0);
+ if (ret < 0) {
+ goto exit;
+ }
+
+ memset(&header, 0, sizeof(header));
+ header.magic = cpu_to_be32(QCOW_MAGIC);
+ header.version = cpu_to_be32(QCOW_VERSION);
+ header.size = cpu_to_be64(total_size * 512);
+ header_size = sizeof(header);
+ backing_filename_len = 0;
+ if (backing_file) {
+ if (strcmp(backing_file, "fat:")) {
+ header.backing_file_offset = cpu_to_be64(header_size);
+ backing_filename_len = strlen(backing_file);
+ header.backing_file_size = cpu_to_be32(backing_filename_len);
+ header_size += backing_filename_len;
+ } else {
+ /* special backing file for vvfat */
+ backing_file = NULL;
+ }
+ header.cluster_bits = 9; /* 512 byte cluster to avoid copying
+ unmodifyed sectors */
+ header.l2_bits = 12; /* 32 KB L2 tables */
+ } else {
+ header.cluster_bits = 12; /* 4 KB clusters */
+ header.l2_bits = 9; /* 4 KB L2 tables */
+ }
+ header_size = (header_size + 7) & ~7;
+ shift = header.cluster_bits + header.l2_bits;
+ l1_size = ((total_size * 512) + (1LL << shift) - 1) >> shift;
+
+ header.l1_table_offset = cpu_to_be64(header_size);
+ if (flags & BLOCK_FLAG_ENCRYPT) {
+ header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES);
+ } else {
+ header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
+ }
+
+ /* write all the data */
+ ret = bdrv_pwrite(qcow_bs, 0, &header, sizeof(header));
+ if (ret != sizeof(header)) {
+ goto exit;
+ }
+
+ if (backing_file) {
+ ret = bdrv_pwrite(qcow_bs, sizeof(header),
+ backing_file, backing_filename_len);
+ if (ret != backing_filename_len) {
+ goto exit;
+ }
+ }
+
+ tmp = g_malloc0(BDRV_SECTOR_SIZE);
+ for (i = 0; i < ((sizeof(uint64_t)*l1_size + BDRV_SECTOR_SIZE - 1)/
+ BDRV_SECTOR_SIZE); i++) {
+ ret = bdrv_pwrite(qcow_bs, header_size +
+ BDRV_SECTOR_SIZE*i, tmp, BDRV_SECTOR_SIZE);
+ if (ret != BDRV_SECTOR_SIZE) {
+ g_free(tmp);
+ goto exit;
+ }
+ }
+
+ g_free(tmp);
+ ret = 0;
+exit:
+ bdrv_delete(qcow_bs);
+ return ret;
+}
+
+static int qcow_make_empty(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint32_t l1_length = s->l1_size * sizeof(uint64_t);
+ int ret;
+
+ memset(s->l1_table, 0, l1_length);
+ if (bdrv_pwrite_sync(bs->file, s->l1_table_offset, s->l1_table,
+ l1_length) < 0)
+ return -1;
+ ret = bdrv_truncate(bs->file, s->l1_table_offset + l1_length);
+ if (ret < 0)
+ return ret;
+
+ memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
+ memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
+ memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
+
+ return 0;
+}
+
+/* XXX: put compressed sectors first, then all the cluster aligned
+ tables to avoid losing bytes in alignment */
+static int qcow_write_compressed(BlockDriverState *bs, int64_t sector_num,
+ const uint8_t *buf, int nb_sectors)
+{
+ BDRVQcowState *s = bs->opaque;
+ z_stream strm;
+ int ret, out_len;
+ uint8_t *out_buf;
+ uint64_t cluster_offset;
+
+ if (nb_sectors != s->cluster_sectors) {
+ ret = -EINVAL;
+
+ /* Zero-pad last write if image size is not cluster aligned */
+ if (sector_num + nb_sectors == bs->total_sectors &&
+ nb_sectors < s->cluster_sectors) {
+ uint8_t *pad_buf = qemu_blockalign(bs, s->cluster_size);
+ memset(pad_buf, 0, s->cluster_size);
+ memcpy(pad_buf, buf, nb_sectors * BDRV_SECTOR_SIZE);
+ ret = qcow_write_compressed(bs, sector_num,
+ pad_buf, s->cluster_sectors);
+ qemu_vfree(pad_buf);
+ }
+ return ret;
+ }
+
+ out_buf = g_malloc(s->cluster_size + (s->cluster_size / 1000) + 128);
+
+ /* best compression, small window, no zlib header */
+ memset(&strm, 0, sizeof(strm));
+ ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION,
+ Z_DEFLATED, -12,
+ 9, Z_DEFAULT_STRATEGY);
+ if (ret != 0) {
+ ret = -EINVAL;
+ goto fail;
+ }
+
+ strm.avail_in = s->cluster_size;
+ strm.next_in = (uint8_t *)buf;
+ strm.avail_out = s->cluster_size;
+ strm.next_out = out_buf;
+
+ ret = deflate(&strm, Z_FINISH);
+ if (ret != Z_STREAM_END && ret != Z_OK) {
+ deflateEnd(&strm);
+ ret = -EINVAL;
+ goto fail;
+ }
+ out_len = strm.next_out - out_buf;
+
+ deflateEnd(&strm);
+
+ if (ret != Z_STREAM_END || out_len >= s->cluster_size) {
+ /* could not compress: write normal cluster */
+ ret = bdrv_write(bs, sector_num, buf, s->cluster_sectors);
+ if (ret < 0) {
+ goto fail;
+ }
+ } else {
+ cluster_offset = get_cluster_offset(bs, sector_num << 9, 2,
+ out_len, 0, 0);
+ if (cluster_offset == 0) {
+ ret = -EIO;
+ goto fail;
+ }
+
+ cluster_offset &= s->cluster_offset_mask;
+ ret = bdrv_pwrite(bs->file, cluster_offset, out_buf, out_len);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+
+ ret = 0;
+fail:
+ g_free(out_buf);
+ return ret;
+}
+
+static int qcow_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
+{
+ BDRVQcowState *s = bs->opaque;
+ bdi->cluster_size = s->cluster_size;
+ return 0;
+}
+
+
+static QEMUOptionParameter qcow_create_options[] = {
+ {
+ .name = BLOCK_OPT_SIZE,
+ .type = OPT_SIZE,
+ .help = "Virtual disk size"
+ },
+ {
+ .name = BLOCK_OPT_BACKING_FILE,
+ .type = OPT_STRING,
+ .help = "File name of a base image"
+ },
+ {
+ .name = BLOCK_OPT_ENCRYPT,
+ .type = OPT_FLAG,
+ .help = "Encrypt the image"
+ },
+ { NULL }
+};
+
+static BlockDriver bdrv_qcow = {
+ .format_name = "qcow",
+ .instance_size = sizeof(BDRVQcowState),
+ .bdrv_probe = qcow_probe,
+ .bdrv_open = qcow_open,
+ .bdrv_close = qcow_close,
+ .bdrv_reopen_prepare = qcow_reopen_prepare,
+ .bdrv_create = qcow_create,
+ .bdrv_has_zero_init = bdrv_has_zero_init_1,
+
+ .bdrv_co_readv = qcow_co_readv,
+ .bdrv_co_writev = qcow_co_writev,
+ .bdrv_co_is_allocated = qcow_co_is_allocated,
+
+ .bdrv_set_key = qcow_set_key,
+ .bdrv_make_empty = qcow_make_empty,
+ .bdrv_write_compressed = qcow_write_compressed,
+ .bdrv_get_info = qcow_get_info,
+
+ .create_options = qcow_create_options,
+};
+
+static void bdrv_qcow_init(void)
+{
+ bdrv_register(&bdrv_qcow);
+}
+
+block_init(bdrv_qcow_init);
diff --git a/contrib/qemu/block/qcow2-cache.c b/contrib/qemu/block/qcow2-cache.c
new file mode 100644
index 00000000000..2f3114ecc24
--- /dev/null
+++ b/contrib/qemu/block/qcow2-cache.c
@@ -0,0 +1,323 @@
+/*
+ * L2/refcount table cache for the QCOW2 format
+ *
+ * Copyright (c) 2010 Kevin Wolf <kwolf@redhat.com>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "block/block_int.h"
+#include "qemu-common.h"
+#include "qcow2.h"
+#include "trace.h"
+
+typedef struct Qcow2CachedTable {
+ void* table;
+ int64_t offset;
+ bool dirty;
+ int cache_hits;
+ int ref;
+} Qcow2CachedTable;
+
+struct Qcow2Cache {
+ Qcow2CachedTable* entries;
+ struct Qcow2Cache* depends;
+ int size;
+ bool depends_on_flush;
+};
+
+Qcow2Cache *qcow2_cache_create(BlockDriverState *bs, int num_tables)
+{
+ BDRVQcowState *s = bs->opaque;
+ Qcow2Cache *c;
+ int i;
+
+ c = g_malloc0(sizeof(*c));
+ c->size = num_tables;
+ c->entries = g_malloc0(sizeof(*c->entries) * num_tables);
+
+ for (i = 0; i < c->size; i++) {
+ c->entries[i].table = qemu_blockalign(bs, s->cluster_size);
+ }
+
+ return c;
+}
+
+int qcow2_cache_destroy(BlockDriverState* bs, Qcow2Cache *c)
+{
+ int i;
+
+ for (i = 0; i < c->size; i++) {
+ assert(c->entries[i].ref == 0);
+ qemu_vfree(c->entries[i].table);
+ }
+
+ g_free(c->entries);
+ g_free(c);
+
+ return 0;
+}
+
+static int qcow2_cache_flush_dependency(BlockDriverState *bs, Qcow2Cache *c)
+{
+ int ret;
+
+ ret = qcow2_cache_flush(bs, c->depends);
+ if (ret < 0) {
+ return ret;
+ }
+
+ c->depends = NULL;
+ c->depends_on_flush = false;
+
+ return 0;
+}
+
+static int qcow2_cache_entry_flush(BlockDriverState *bs, Qcow2Cache *c, int i)
+{
+ BDRVQcowState *s = bs->opaque;
+ int ret = 0;
+
+ if (!c->entries[i].dirty || !c->entries[i].offset) {
+ return 0;
+ }
+
+ trace_qcow2_cache_entry_flush(qemu_coroutine_self(),
+ c == s->l2_table_cache, i);
+
+ if (c->depends) {
+ ret = qcow2_cache_flush_dependency(bs, c);
+ } else if (c->depends_on_flush) {
+ ret = bdrv_flush(bs->file);
+ if (ret >= 0) {
+ c->depends_on_flush = false;
+ }
+ }
+
+ if (ret < 0) {
+ return ret;
+ }
+
+ if (c == s->refcount_block_cache) {
+ BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_UPDATE_PART);
+ } else if (c == s->l2_table_cache) {
+ BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE);
+ }
+
+ ret = bdrv_pwrite(bs->file, c->entries[i].offset, c->entries[i].table,
+ s->cluster_size);
+ if (ret < 0) {
+ return ret;
+ }
+
+ c->entries[i].dirty = false;
+
+ return 0;
+}
+
+int qcow2_cache_flush(BlockDriverState *bs, Qcow2Cache *c)
+{
+ BDRVQcowState *s = bs->opaque;
+ int result = 0;
+ int ret;
+ int i;
+
+ trace_qcow2_cache_flush(qemu_coroutine_self(), c == s->l2_table_cache);
+
+ for (i = 0; i < c->size; i++) {
+ ret = qcow2_cache_entry_flush(bs, c, i);
+ if (ret < 0 && result != -ENOSPC) {
+ result = ret;
+ }
+ }
+
+ if (result == 0) {
+ ret = bdrv_flush(bs->file);
+ if (ret < 0) {
+ result = ret;
+ }
+ }
+
+ return result;
+}
+
+int qcow2_cache_set_dependency(BlockDriverState *bs, Qcow2Cache *c,
+ Qcow2Cache *dependency)
+{
+ int ret;
+
+ if (dependency->depends) {
+ ret = qcow2_cache_flush_dependency(bs, dependency);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ if (c->depends && (c->depends != dependency)) {
+ ret = qcow2_cache_flush_dependency(bs, c);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ c->depends = dependency;
+ return 0;
+}
+
+void qcow2_cache_depends_on_flush(Qcow2Cache *c)
+{
+ c->depends_on_flush = true;
+}
+
+static int qcow2_cache_find_entry_to_replace(Qcow2Cache *c)
+{
+ int i;
+ int min_count = INT_MAX;
+ int min_index = -1;
+
+
+ for (i = 0; i < c->size; i++) {
+ if (c->entries[i].ref) {
+ continue;
+ }
+
+ if (c->entries[i].cache_hits < min_count) {
+ min_index = i;
+ min_count = c->entries[i].cache_hits;
+ }
+
+ /* Give newer hits priority */
+ /* TODO Check how to optimize the replacement strategy */
+ c->entries[i].cache_hits /= 2;
+ }
+
+ if (min_index == -1) {
+ /* This can't happen in current synchronous code, but leave the check
+ * here as a reminder for whoever starts using AIO with the cache */
+ abort();
+ }
+ return min_index;
+}
+
+static int qcow2_cache_do_get(BlockDriverState *bs, Qcow2Cache *c,
+ uint64_t offset, void **table, bool read_from_disk)
+{
+ BDRVQcowState *s = bs->opaque;
+ int i;
+ int ret;
+
+ trace_qcow2_cache_get(qemu_coroutine_self(), c == s->l2_table_cache,
+ offset, read_from_disk);
+
+ /* Check if the table is already cached */
+ for (i = 0; i < c->size; i++) {
+ if (c->entries[i].offset == offset) {
+ goto found;
+ }
+ }
+
+ /* If not, write a table back and replace it */
+ i = qcow2_cache_find_entry_to_replace(c);
+ trace_qcow2_cache_get_replace_entry(qemu_coroutine_self(),
+ c == s->l2_table_cache, i);
+ if (i < 0) {
+ return i;
+ }
+
+ ret = qcow2_cache_entry_flush(bs, c, i);
+ if (ret < 0) {
+ return ret;
+ }
+
+ trace_qcow2_cache_get_read(qemu_coroutine_self(),
+ c == s->l2_table_cache, i);
+ c->entries[i].offset = 0;
+ if (read_from_disk) {
+ if (c == s->l2_table_cache) {
+ BLKDBG_EVENT(bs->file, BLKDBG_L2_LOAD);
+ }
+
+ ret = bdrv_pread(bs->file, offset, c->entries[i].table, s->cluster_size);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ /* Give the table some hits for the start so that it won't be replaced
+ * immediately. The number 32 is completely arbitrary. */
+ c->entries[i].cache_hits = 32;
+ c->entries[i].offset = offset;
+
+ /* And return the right table */
+found:
+ c->entries[i].cache_hits++;
+ c->entries[i].ref++;
+ *table = c->entries[i].table;
+
+ trace_qcow2_cache_get_done(qemu_coroutine_self(),
+ c == s->l2_table_cache, i);
+
+ return 0;
+}
+
+int qcow2_cache_get(BlockDriverState *bs, Qcow2Cache *c, uint64_t offset,
+ void **table)
+{
+ return qcow2_cache_do_get(bs, c, offset, table, true);
+}
+
+int qcow2_cache_get_empty(BlockDriverState *bs, Qcow2Cache *c, uint64_t offset,
+ void **table)
+{
+ return qcow2_cache_do_get(bs, c, offset, table, false);
+}
+
+int qcow2_cache_put(BlockDriverState *bs, Qcow2Cache *c, void **table)
+{
+ int i;
+
+ for (i = 0; i < c->size; i++) {
+ if (c->entries[i].table == *table) {
+ goto found;
+ }
+ }
+ return -ENOENT;
+
+found:
+ c->entries[i].ref--;
+ *table = NULL;
+
+ assert(c->entries[i].ref >= 0);
+ return 0;
+}
+
+void qcow2_cache_entry_mark_dirty(Qcow2Cache *c, void *table)
+{
+ int i;
+
+ for (i = 0; i < c->size; i++) {
+ if (c->entries[i].table == table) {
+ goto found;
+ }
+ }
+ abort();
+
+found:
+ c->entries[i].dirty = true;
+}
diff --git a/contrib/qemu/block/qcow2-cluster.c b/contrib/qemu/block/qcow2-cluster.c
new file mode 100644
index 00000000000..cca76d4fcdd
--- /dev/null
+++ b/contrib/qemu/block/qcow2-cluster.c
@@ -0,0 +1,1478 @@
+/*
+ * Block driver for the QCOW version 2 format
+ *
+ * Copyright (c) 2004-2006 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include <zlib.h>
+
+#include "qemu-common.h"
+#include "block/block_int.h"
+#include "block/qcow2.h"
+#include "trace.h"
+
+int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
+ bool exact_size)
+{
+ BDRVQcowState *s = bs->opaque;
+ int new_l1_size2, ret, i;
+ uint64_t *new_l1_table;
+ int64_t new_l1_table_offset, new_l1_size;
+ uint8_t data[12];
+
+ if (min_size <= s->l1_size)
+ return 0;
+
+ if (exact_size) {
+ new_l1_size = min_size;
+ } else {
+ /* Bump size up to reduce the number of times we have to grow */
+ new_l1_size = s->l1_size;
+ if (new_l1_size == 0) {
+ new_l1_size = 1;
+ }
+ while (min_size > new_l1_size) {
+ new_l1_size = (new_l1_size * 3 + 1) / 2;
+ }
+ }
+
+ if (new_l1_size > INT_MAX) {
+ return -EFBIG;
+ }
+
+#ifdef DEBUG_ALLOC2
+ fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
+ s->l1_size, new_l1_size);
+#endif
+
+ new_l1_size2 = sizeof(uint64_t) * new_l1_size;
+ new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
+ memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
+
+ /* write new table (align to cluster) */
+ BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
+ new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
+ if (new_l1_table_offset < 0) {
+ g_free(new_l1_table);
+ return new_l1_table_offset;
+ }
+
+ ret = qcow2_cache_flush(bs, s->refcount_block_cache);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
+ for(i = 0; i < s->l1_size; i++)
+ new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
+ ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
+ if (ret < 0)
+ goto fail;
+ for(i = 0; i < s->l1_size; i++)
+ new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
+
+ /* set new table */
+ BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
+ cpu_to_be32w((uint32_t*)data, new_l1_size);
+ cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
+ ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
+ if (ret < 0) {
+ goto fail;
+ }
+ g_free(s->l1_table);
+ qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t),
+ QCOW2_DISCARD_OTHER);
+ s->l1_table_offset = new_l1_table_offset;
+ s->l1_table = new_l1_table;
+ s->l1_size = new_l1_size;
+ return 0;
+ fail:
+ g_free(new_l1_table);
+ qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
+ QCOW2_DISCARD_OTHER);
+ return ret;
+}
+
+/*
+ * l2_load
+ *
+ * Loads a L2 table into memory. If the table is in the cache, the cache
+ * is used; otherwise the L2 table is loaded from the image file.
+ *
+ * Returns a pointer to the L2 table on success, or NULL if the read from
+ * the image file failed.
+ */
+
+static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
+ uint64_t **l2_table)
+{
+ BDRVQcowState *s = bs->opaque;
+ int ret;
+
+ ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
+
+ return ret;
+}
+
+/*
+ * Writes one sector of the L1 table to the disk (can't update single entries
+ * and we really don't want bdrv_pread to perform a read-modify-write)
+ */
+#define L1_ENTRIES_PER_SECTOR (512 / 8)
+static int write_l1_entry(BlockDriverState *bs, int l1_index)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t buf[L1_ENTRIES_PER_SECTOR];
+ int l1_start_index;
+ int i, ret;
+
+ l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
+ for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
+ buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
+ }
+
+ BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
+ ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
+ buf, sizeof(buf));
+ if (ret < 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * l2_allocate
+ *
+ * Allocate a new l2 entry in the file. If l1_index points to an already
+ * used entry in the L2 table (i.e. we are doing a copy on write for the L2
+ * table) copy the contents of the old L2 table into the newly allocated one.
+ * Otherwise the new table is initialized with zeros.
+ *
+ */
+
+static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t old_l2_offset;
+ uint64_t *l2_table;
+ int64_t l2_offset;
+ int ret;
+
+ old_l2_offset = s->l1_table[l1_index];
+
+ trace_qcow2_l2_allocate(bs, l1_index);
+
+ /* allocate a new l2 entry */
+
+ l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
+ if (l2_offset < 0) {
+ return l2_offset;
+ }
+
+ ret = qcow2_cache_flush(bs, s->refcount_block_cache);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /* allocate a new entry in the l2 cache */
+
+ trace_qcow2_l2_allocate_get_empty(bs, l1_index);
+ ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
+ if (ret < 0) {
+ return ret;
+ }
+
+ l2_table = *table;
+
+ if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
+ /* if there was no old l2 table, clear the new table */
+ memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
+ } else {
+ uint64_t* old_table;
+
+ /* if there was an old l2 table, read it from the disk */
+ BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
+ ret = qcow2_cache_get(bs, s->l2_table_cache,
+ old_l2_offset & L1E_OFFSET_MASK,
+ (void**) &old_table);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ memcpy(l2_table, old_table, s->cluster_size);
+
+ ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+
+ /* write the l2 table to the file */
+ BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
+
+ trace_qcow2_l2_allocate_write_l2(bs, l1_index);
+ qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
+ ret = qcow2_cache_flush(bs, s->l2_table_cache);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /* update the L1 entry */
+ trace_qcow2_l2_allocate_write_l1(bs, l1_index);
+ s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
+ ret = write_l1_entry(bs, l1_index);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ *table = l2_table;
+ trace_qcow2_l2_allocate_done(bs, l1_index, 0);
+ return 0;
+
+fail:
+ trace_qcow2_l2_allocate_done(bs, l1_index, ret);
+ qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
+ s->l1_table[l1_index] = old_l2_offset;
+ return ret;
+}
+
+/*
+ * Checks how many clusters in a given L2 table are contiguous in the image
+ * file. As soon as one of the flags in the bitmask stop_flags changes compared
+ * to the first cluster, the search is stopped and the cluster is not counted
+ * as contiguous. (This allows it, for example, to stop at the first compressed
+ * cluster which may require a different handling)
+ */
+static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
+ uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
+{
+ int i;
+ uint64_t mask = stop_flags | L2E_OFFSET_MASK;
+ uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
+
+ if (!offset)
+ return 0;
+
+ for (i = start; i < start + nb_clusters; i++) {
+ uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
+ if (offset + (uint64_t) i * cluster_size != l2_entry) {
+ break;
+ }
+ }
+
+ return (i - start);
+}
+
+static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
+{
+ int i;
+
+ for (i = 0; i < nb_clusters; i++) {
+ int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
+
+ if (type != QCOW2_CLUSTER_UNALLOCATED) {
+ break;
+ }
+ }
+
+ return i;
+}
+
+/* The crypt function is compatible with the linux cryptoloop
+ algorithm for < 4 GB images. NOTE: out_buf == in_buf is
+ supported */
+void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
+ uint8_t *out_buf, const uint8_t *in_buf,
+ int nb_sectors, int enc,
+ const AES_KEY *key)
+{
+ union {
+ uint64_t ll[2];
+ uint8_t b[16];
+ } ivec;
+ int i;
+
+ for(i = 0; i < nb_sectors; i++) {
+ ivec.ll[0] = cpu_to_le64(sector_num);
+ ivec.ll[1] = 0;
+ AES_cbc_encrypt(in_buf, out_buf, 512, key,
+ ivec.b, enc);
+ sector_num++;
+ in_buf += 512;
+ out_buf += 512;
+ }
+}
+
+static int coroutine_fn copy_sectors(BlockDriverState *bs,
+ uint64_t start_sect,
+ uint64_t cluster_offset,
+ int n_start, int n_end)
+{
+ BDRVQcowState *s = bs->opaque;
+ QEMUIOVector qiov;
+ struct iovec iov;
+ int n, ret;
+
+ /*
+ * If this is the last cluster and it is only partially used, we must only
+ * copy until the end of the image, or bdrv_check_request will fail for the
+ * bdrv_read/write calls below.
+ */
+ if (start_sect + n_end > bs->total_sectors) {
+ n_end = bs->total_sectors - start_sect;
+ }
+
+ n = n_end - n_start;
+ if (n <= 0) {
+ return 0;
+ }
+
+ iov.iov_len = n * BDRV_SECTOR_SIZE;
+ iov.iov_base = qemu_blockalign(bs, iov.iov_len);
+
+ qemu_iovec_init_external(&qiov, &iov, 1);
+
+ BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
+
+ /* Call .bdrv_co_readv() directly instead of using the public block-layer
+ * interface. This avoids double I/O throttling and request tracking,
+ * which can lead to deadlock when block layer copy-on-read is enabled.
+ */
+ ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
+ if (ret < 0) {
+ goto out;
+ }
+
+ if (s->crypt_method) {
+ qcow2_encrypt_sectors(s, start_sect + n_start,
+ iov.iov_base, iov.iov_base, n, 1,
+ &s->aes_encrypt_key);
+ }
+
+ BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
+ ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
+ if (ret < 0) {
+ goto out;
+ }
+
+ ret = 0;
+out:
+ qemu_vfree(iov.iov_base);
+ return ret;
+}
+
+
+/*
+ * get_cluster_offset
+ *
+ * For a given offset of the disk image, find the cluster offset in
+ * qcow2 file. The offset is stored in *cluster_offset.
+ *
+ * on entry, *num is the number of contiguous sectors we'd like to
+ * access following offset.
+ *
+ * on exit, *num is the number of contiguous sectors we can read.
+ *
+ * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
+ * cases.
+ */
+int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
+ int *num, uint64_t *cluster_offset)
+{
+ BDRVQcowState *s = bs->opaque;
+ unsigned int l2_index;
+ uint64_t l1_index, l2_offset, *l2_table;
+ int l1_bits, c;
+ unsigned int index_in_cluster, nb_clusters;
+ uint64_t nb_available, nb_needed;
+ int ret;
+
+ index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
+ nb_needed = *num + index_in_cluster;
+
+ l1_bits = s->l2_bits + s->cluster_bits;
+
+ /* compute how many bytes there are between the offset and
+ * the end of the l1 entry
+ */
+
+ nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
+
+ /* compute the number of available sectors */
+
+ nb_available = (nb_available >> 9) + index_in_cluster;
+
+ if (nb_needed > nb_available) {
+ nb_needed = nb_available;
+ }
+
+ *cluster_offset = 0;
+
+ /* seek the the l2 offset in the l1 table */
+
+ l1_index = offset >> l1_bits;
+ if (l1_index >= s->l1_size) {
+ ret = QCOW2_CLUSTER_UNALLOCATED;
+ goto out;
+ }
+
+ l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
+ if (!l2_offset) {
+ ret = QCOW2_CLUSTER_UNALLOCATED;
+ goto out;
+ }
+
+ /* load the l2 table in memory */
+
+ ret = l2_load(bs, l2_offset, &l2_table);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* find the cluster offset for the given disk offset */
+
+ l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
+ *cluster_offset = be64_to_cpu(l2_table[l2_index]);
+ nb_clusters = size_to_clusters(s, nb_needed << 9);
+
+ ret = qcow2_get_cluster_type(*cluster_offset);
+ switch (ret) {
+ case QCOW2_CLUSTER_COMPRESSED:
+ /* Compressed clusters can only be processed one by one */
+ c = 1;
+ *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
+ break;
+ case QCOW2_CLUSTER_ZERO:
+ if (s->qcow_version < 3) {
+ return -EIO;
+ }
+ c = count_contiguous_clusters(nb_clusters, s->cluster_size,
+ &l2_table[l2_index], 0,
+ QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
+ *cluster_offset = 0;
+ break;
+ case QCOW2_CLUSTER_UNALLOCATED:
+ /* how many empty clusters ? */
+ c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
+ *cluster_offset = 0;
+ break;
+ case QCOW2_CLUSTER_NORMAL:
+ /* how many allocated clusters ? */
+ c = count_contiguous_clusters(nb_clusters, s->cluster_size,
+ &l2_table[l2_index], 0,
+ QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
+ *cluster_offset &= L2E_OFFSET_MASK;
+ break;
+ default:
+ abort();
+ }
+
+ qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
+
+ nb_available = (c * s->cluster_sectors);
+
+out:
+ if (nb_available > nb_needed)
+ nb_available = nb_needed;
+
+ *num = nb_available - index_in_cluster;
+
+ return ret;
+}
+
+/*
+ * get_cluster_table
+ *
+ * for a given disk offset, load (and allocate if needed)
+ * the l2 table.
+ *
+ * the l2 table offset in the qcow2 file and the cluster index
+ * in the l2 table are given to the caller.
+ *
+ * Returns 0 on success, -errno in failure case
+ */
+static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
+ uint64_t **new_l2_table,
+ int *new_l2_index)
+{
+ BDRVQcowState *s = bs->opaque;
+ unsigned int l2_index;
+ uint64_t l1_index, l2_offset;
+ uint64_t *l2_table = NULL;
+ int ret;
+
+ /* seek the the l2 offset in the l1 table */
+
+ l1_index = offset >> (s->l2_bits + s->cluster_bits);
+ if (l1_index >= s->l1_size) {
+ ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ assert(l1_index < s->l1_size);
+ l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
+
+ /* seek the l2 table of the given l2 offset */
+
+ if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
+ /* load the l2 table in memory */
+ ret = l2_load(bs, l2_offset, &l2_table);
+ if (ret < 0) {
+ return ret;
+ }
+ } else {
+ /* First allocate a new L2 table (and do COW if needed) */
+ ret = l2_allocate(bs, l1_index, &l2_table);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* Then decrease the refcount of the old table */
+ if (l2_offset) {
+ qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
+ QCOW2_DISCARD_OTHER);
+ }
+ }
+
+ /* find the cluster offset for the given disk offset */
+
+ l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
+
+ *new_l2_table = l2_table;
+ *new_l2_index = l2_index;
+
+ return 0;
+}
+
+/*
+ * alloc_compressed_cluster_offset
+ *
+ * For a given offset of the disk image, return cluster offset in
+ * qcow2 file.
+ *
+ * If the offset is not found, allocate a new compressed cluster.
+ *
+ * Return the cluster offset if successful,
+ * Return 0, otherwise.
+ *
+ */
+
+uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
+ uint64_t offset,
+ int compressed_size)
+{
+ BDRVQcowState *s = bs->opaque;
+ int l2_index, ret;
+ uint64_t *l2_table;
+ int64_t cluster_offset;
+ int nb_csectors;
+
+ ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
+ if (ret < 0) {
+ return 0;
+ }
+
+ /* Compression can't overwrite anything. Fail if the cluster was already
+ * allocated. */
+ cluster_offset = be64_to_cpu(l2_table[l2_index]);
+ if (cluster_offset & L2E_OFFSET_MASK) {
+ qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
+ return 0;
+ }
+
+ cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
+ if (cluster_offset < 0) {
+ qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
+ return 0;
+ }
+
+ nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
+ (cluster_offset >> 9);
+
+ cluster_offset |= QCOW_OFLAG_COMPRESSED |
+ ((uint64_t)nb_csectors << s->csize_shift);
+
+ /* update L2 table */
+
+ /* compressed clusters never have the copied flag */
+
+ BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
+ qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
+ l2_table[l2_index] = cpu_to_be64(cluster_offset);
+ ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
+ if (ret < 0) {
+ return 0;
+ }
+
+ return cluster_offset;
+}
+
+static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
+{
+ BDRVQcowState *s = bs->opaque;
+ int ret;
+
+ if (r->nb_sectors == 0) {
+ return 0;
+ }
+
+ qemu_co_mutex_unlock(&s->lock);
+ ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
+ r->offset / BDRV_SECTOR_SIZE,
+ r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
+ qemu_co_mutex_lock(&s->lock);
+
+ if (ret < 0) {
+ return ret;
+ }
+
+ /*
+ * Before we update the L2 table to actually point to the new cluster, we
+ * need to be sure that the refcounts have been increased and COW was
+ * handled.
+ */
+ qcow2_cache_depends_on_flush(s->l2_table_cache);
+
+ return 0;
+}
+
+int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
+{
+ BDRVQcowState *s = bs->opaque;
+ int i, j = 0, l2_index, ret;
+ uint64_t *old_cluster, *l2_table;
+ uint64_t cluster_offset = m->alloc_offset;
+
+ trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
+ assert(m->nb_clusters > 0);
+
+ old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
+
+ /* copy content of unmodified sectors */
+ ret = perform_cow(bs, m, &m->cow_start);
+ if (ret < 0) {
+ goto err;
+ }
+
+ ret = perform_cow(bs, m, &m->cow_end);
+ if (ret < 0) {
+ goto err;
+ }
+
+ /* Update L2 table. */
+ if (s->use_lazy_refcounts) {
+ qcow2_mark_dirty(bs);
+ }
+ if (qcow2_need_accurate_refcounts(s)) {
+ qcow2_cache_set_dependency(bs, s->l2_table_cache,
+ s->refcount_block_cache);
+ }
+
+ ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
+ if (ret < 0) {
+ goto err;
+ }
+ qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
+
+ for (i = 0; i < m->nb_clusters; i++) {
+ /* if two concurrent writes happen to the same unallocated cluster
+ * each write allocates separate cluster and writes data concurrently.
+ * The first one to complete updates l2 table with pointer to its
+ * cluster the second one has to do RMW (which is done above by
+ * copy_sectors()), update l2 table with its cluster pointer and free
+ * old cluster. This is what this loop does */
+ if(l2_table[l2_index + i] != 0)
+ old_cluster[j++] = l2_table[l2_index + i];
+
+ l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
+ (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
+ }
+
+
+ ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
+ if (ret < 0) {
+ goto err;
+ }
+
+ /*
+ * If this was a COW, we need to decrease the refcount of the old cluster.
+ * Also flush bs->file to get the right order for L2 and refcount update.
+ *
+ * Don't discard clusters that reach a refcount of 0 (e.g. compressed
+ * clusters), the next write will reuse them anyway.
+ */
+ if (j != 0) {
+ for (i = 0; i < j; i++) {
+ qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
+ QCOW2_DISCARD_NEVER);
+ }
+ }
+
+ ret = 0;
+err:
+ g_free(old_cluster);
+ return ret;
+ }
+
+/*
+ * Returns the number of contiguous clusters that can be used for an allocating
+ * write, but require COW to be performed (this includes yet unallocated space,
+ * which must copy from the backing file)
+ */
+static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
+ uint64_t *l2_table, int l2_index)
+{
+ int i;
+
+ for (i = 0; i < nb_clusters; i++) {
+ uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
+ int cluster_type = qcow2_get_cluster_type(l2_entry);
+
+ switch(cluster_type) {
+ case QCOW2_CLUSTER_NORMAL:
+ if (l2_entry & QCOW_OFLAG_COPIED) {
+ goto out;
+ }
+ break;
+ case QCOW2_CLUSTER_UNALLOCATED:
+ case QCOW2_CLUSTER_COMPRESSED:
+ case QCOW2_CLUSTER_ZERO:
+ break;
+ default:
+ abort();
+ }
+ }
+
+out:
+ assert(i <= nb_clusters);
+ return i;
+}
+
+/*
+ * Check if there already is an AIO write request in flight which allocates
+ * the same cluster. In this case we need to wait until the previous
+ * request has completed and updated the L2 table accordingly.
+ *
+ * Returns:
+ * 0 if there was no dependency. *cur_bytes indicates the number of
+ * bytes from guest_offset that can be read before the next
+ * dependency must be processed (or the request is complete)
+ *
+ * -EAGAIN if we had to wait for another request, previously gathered
+ * information on cluster allocation may be invalid now. The caller
+ * must start over anyway, so consider *cur_bytes undefined.
+ */
+static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
+ uint64_t *cur_bytes, QCowL2Meta **m)
+{
+ BDRVQcowState *s = bs->opaque;
+ QCowL2Meta *old_alloc;
+ uint64_t bytes = *cur_bytes;
+
+ QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
+
+ uint64_t start = guest_offset;
+ uint64_t end = start + bytes;
+ uint64_t old_start = l2meta_cow_start(old_alloc);
+ uint64_t old_end = l2meta_cow_end(old_alloc);
+
+ if (end <= old_start || start >= old_end) {
+ /* No intersection */
+ } else {
+ if (start < old_start) {
+ /* Stop at the start of a running allocation */
+ bytes = old_start - start;
+ } else {
+ bytes = 0;
+ }
+
+ /* Stop if already an l2meta exists. After yielding, it wouldn't
+ * be valid any more, so we'd have to clean up the old L2Metas
+ * and deal with requests depending on them before starting to
+ * gather new ones. Not worth the trouble. */
+ if (bytes == 0 && *m) {
+ *cur_bytes = 0;
+ return 0;
+ }
+
+ if (bytes == 0) {
+ /* Wait for the dependency to complete. We need to recheck
+ * the free/allocated clusters when we continue. */
+ qemu_co_mutex_unlock(&s->lock);
+ qemu_co_queue_wait(&old_alloc->dependent_requests);
+ qemu_co_mutex_lock(&s->lock);
+ return -EAGAIN;
+ }
+ }
+ }
+
+ /* Make sure that existing clusters and new allocations are only used up to
+ * the next dependency if we shortened the request above */
+ *cur_bytes = bytes;
+
+ return 0;
+}
+
+/*
+ * Checks how many already allocated clusters that don't require a copy on
+ * write there are at the given guest_offset (up to *bytes). If
+ * *host_offset is not zero, only physically contiguous clusters beginning at
+ * this host offset are counted.
+ *
+ * Note that guest_offset may not be cluster aligned. In this case, the
+ * returned *host_offset points to exact byte referenced by guest_offset and
+ * therefore isn't cluster aligned as well.
+ *
+ * Returns:
+ * 0: if no allocated clusters are available at the given offset.
+ * *bytes is normally unchanged. It is set to 0 if the cluster
+ * is allocated and doesn't need COW, but doesn't have the right
+ * physical offset.
+ *
+ * 1: if allocated clusters that don't require a COW are available at
+ * the requested offset. *bytes may have decreased and describes
+ * the length of the area that can be written to.
+ *
+ * -errno: in error cases
+ */
+static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
+ uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
+{
+ BDRVQcowState *s = bs->opaque;
+ int l2_index;
+ uint64_t cluster_offset;
+ uint64_t *l2_table;
+ unsigned int nb_clusters;
+ unsigned int keep_clusters;
+ int ret, pret;
+
+ trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
+ *bytes);
+
+ assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
+ == offset_into_cluster(s, *host_offset));
+
+ /*
+ * Calculate the number of clusters to look for. We stop at L2 table
+ * boundaries to keep things simple.
+ */
+ nb_clusters =
+ size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
+
+ l2_index = offset_to_l2_index(s, guest_offset);
+ nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
+
+ /* Find L2 entry for the first involved cluster */
+ ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
+ if (ret < 0) {
+ return ret;
+ }
+
+ cluster_offset = be64_to_cpu(l2_table[l2_index]);
+
+ /* Check how many clusters are already allocated and don't need COW */
+ if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
+ && (cluster_offset & QCOW_OFLAG_COPIED))
+ {
+ /* If a specific host_offset is required, check it */
+ bool offset_matches =
+ (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
+
+ if (*host_offset != 0 && !offset_matches) {
+ *bytes = 0;
+ ret = 0;
+ goto out;
+ }
+
+ /* We keep all QCOW_OFLAG_COPIED clusters */
+ keep_clusters =
+ count_contiguous_clusters(nb_clusters, s->cluster_size,
+ &l2_table[l2_index], 0,
+ QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
+ assert(keep_clusters <= nb_clusters);
+
+ *bytes = MIN(*bytes,
+ keep_clusters * s->cluster_size
+ - offset_into_cluster(s, guest_offset));
+
+ ret = 1;
+ } else {
+ ret = 0;
+ }
+
+ /* Cleanup */
+out:
+ pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
+ if (pret < 0) {
+ return pret;
+ }
+
+ /* Only return a host offset if we actually made progress. Otherwise we
+ * would make requirements for handle_alloc() that it can't fulfill */
+ if (ret) {
+ *host_offset = (cluster_offset & L2E_OFFSET_MASK)
+ + offset_into_cluster(s, guest_offset);
+ }
+
+ return ret;
+}
+
+/*
+ * Allocates new clusters for the given guest_offset.
+ *
+ * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
+ * contain the number of clusters that have been allocated and are contiguous
+ * in the image file.
+ *
+ * If *host_offset is non-zero, it specifies the offset in the image file at
+ * which the new clusters must start. *nb_clusters can be 0 on return in this
+ * case if the cluster at host_offset is already in use. If *host_offset is
+ * zero, the clusters can be allocated anywhere in the image file.
+ *
+ * *host_offset is updated to contain the offset into the image file at which
+ * the first allocated cluster starts.
+ *
+ * Return 0 on success and -errno in error cases. -EAGAIN means that the
+ * function has been waiting for another request and the allocation must be
+ * restarted, but the whole request should not be failed.
+ */
+static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
+ uint64_t *host_offset, unsigned int *nb_clusters)
+{
+ BDRVQcowState *s = bs->opaque;
+
+ trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
+ *host_offset, *nb_clusters);
+
+ /* Allocate new clusters */
+ trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
+ if (*host_offset == 0) {
+ int64_t cluster_offset =
+ qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
+ if (cluster_offset < 0) {
+ return cluster_offset;
+ }
+ *host_offset = cluster_offset;
+ return 0;
+ } else {
+ int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
+ if (ret < 0) {
+ return ret;
+ }
+ *nb_clusters = ret;
+ return 0;
+ }
+}
+
+/*
+ * Allocates new clusters for an area that either is yet unallocated or needs a
+ * copy on write. If *host_offset is non-zero, clusters are only allocated if
+ * the new allocation can match the specified host offset.
+ *
+ * Note that guest_offset may not be cluster aligned. In this case, the
+ * returned *host_offset points to exact byte referenced by guest_offset and
+ * therefore isn't cluster aligned as well.
+ *
+ * Returns:
+ * 0: if no clusters could be allocated. *bytes is set to 0,
+ * *host_offset is left unchanged.
+ *
+ * 1: if new clusters were allocated. *bytes may be decreased if the
+ * new allocation doesn't cover all of the requested area.
+ * *host_offset is updated to contain the host offset of the first
+ * newly allocated cluster.
+ *
+ * -errno: in error cases
+ */
+static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
+ uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
+{
+ BDRVQcowState *s = bs->opaque;
+ int l2_index;
+ uint64_t *l2_table;
+ uint64_t entry;
+ unsigned int nb_clusters;
+ int ret;
+
+ uint64_t alloc_cluster_offset;
+
+ trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
+ *bytes);
+ assert(*bytes > 0);
+
+ /*
+ * Calculate the number of clusters to look for. We stop at L2 table
+ * boundaries to keep things simple.
+ */
+ nb_clusters =
+ size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
+
+ l2_index = offset_to_l2_index(s, guest_offset);
+ nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
+
+ /* Find L2 entry for the first involved cluster */
+ ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
+ if (ret < 0) {
+ return ret;
+ }
+
+ entry = be64_to_cpu(l2_table[l2_index]);
+
+ /* For the moment, overwrite compressed clusters one by one */
+ if (entry & QCOW_OFLAG_COMPRESSED) {
+ nb_clusters = 1;
+ } else {
+ nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
+ }
+
+ /* This function is only called when there were no non-COW clusters, so if
+ * we can't find any unallocated or COW clusters either, something is
+ * wrong with our code. */
+ assert(nb_clusters > 0);
+
+ ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* Allocate, if necessary at a given offset in the image file */
+ alloc_cluster_offset = start_of_cluster(s, *host_offset);
+ ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
+ &nb_clusters);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /* Can't extend contiguous allocation */
+ if (nb_clusters == 0) {
+ *bytes = 0;
+ return 0;
+ }
+
+ /*
+ * Save info needed for meta data update.
+ *
+ * requested_sectors: Number of sectors from the start of the first
+ * newly allocated cluster to the end of the (possibly shortened
+ * before) write request.
+ *
+ * avail_sectors: Number of sectors from the start of the first
+ * newly allocated to the end of the last newly allocated cluster.
+ *
+ * nb_sectors: The number of sectors from the start of the first
+ * newly allocated cluster to the end of the area that the write
+ * request actually writes to (excluding COW at the end)
+ */
+ int requested_sectors =
+ (*bytes + offset_into_cluster(s, guest_offset))
+ >> BDRV_SECTOR_BITS;
+ int avail_sectors = nb_clusters
+ << (s->cluster_bits - BDRV_SECTOR_BITS);
+ int alloc_n_start = offset_into_cluster(s, guest_offset)
+ >> BDRV_SECTOR_BITS;
+ int nb_sectors = MIN(requested_sectors, avail_sectors);
+ QCowL2Meta *old_m = *m;
+
+ *m = g_malloc0(sizeof(**m));
+
+ **m = (QCowL2Meta) {
+ .next = old_m,
+
+ .alloc_offset = alloc_cluster_offset,
+ .offset = start_of_cluster(s, guest_offset),
+ .nb_clusters = nb_clusters,
+ .nb_available = nb_sectors,
+
+ .cow_start = {
+ .offset = 0,
+ .nb_sectors = alloc_n_start,
+ },
+ .cow_end = {
+ .offset = nb_sectors * BDRV_SECTOR_SIZE,
+ .nb_sectors = avail_sectors - nb_sectors,
+ },
+ };
+ qemu_co_queue_init(&(*m)->dependent_requests);
+ QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
+
+ *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
+ *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
+ - offset_into_cluster(s, guest_offset));
+ assert(*bytes != 0);
+
+ return 1;
+
+fail:
+ if (*m && (*m)->nb_clusters > 0) {
+ QLIST_REMOVE(*m, next_in_flight);
+ }
+ return ret;
+}
+
+/*
+ * alloc_cluster_offset
+ *
+ * For a given offset on the virtual disk, find the cluster offset in qcow2
+ * file. If the offset is not found, allocate a new cluster.
+ *
+ * If the cluster was already allocated, m->nb_clusters is set to 0 and
+ * other fields in m are meaningless.
+ *
+ * If the cluster is newly allocated, m->nb_clusters is set to the number of
+ * contiguous clusters that have been allocated. In this case, the other
+ * fields of m are valid and contain information about the first allocated
+ * cluster.
+ *
+ * If the request conflicts with another write request in flight, the coroutine
+ * is queued and will be reentered when the dependency has completed.
+ *
+ * Return 0 on success and -errno in error cases
+ */
+int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
+ int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t start, remaining;
+ uint64_t cluster_offset;
+ uint64_t cur_bytes;
+ int ret;
+
+ trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
+ n_start, n_end);
+
+ assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset));
+ offset = start_of_cluster(s, offset);
+
+again:
+ start = offset + (n_start << BDRV_SECTOR_BITS);
+ remaining = (n_end - n_start) << BDRV_SECTOR_BITS;
+ cluster_offset = 0;
+ *host_offset = 0;
+ cur_bytes = 0;
+ *m = NULL;
+
+ while (true) {
+
+ if (!*host_offset) {
+ *host_offset = start_of_cluster(s, cluster_offset);
+ }
+
+ assert(remaining >= cur_bytes);
+
+ start += cur_bytes;
+ remaining -= cur_bytes;
+ cluster_offset += cur_bytes;
+
+ if (remaining == 0) {
+ break;
+ }
+
+ cur_bytes = remaining;
+
+ /*
+ * Now start gathering as many contiguous clusters as possible:
+ *
+ * 1. Check for overlaps with in-flight allocations
+ *
+ * a) Overlap not in the first cluster -> shorten this request and
+ * let the caller handle the rest in its next loop iteration.
+ *
+ * b) Real overlaps of two requests. Yield and restart the search
+ * for contiguous clusters (the situation could have changed
+ * while we were sleeping)
+ *
+ * c) TODO: Request starts in the same cluster as the in-flight
+ * allocation ends. Shorten the COW of the in-fight allocation,
+ * set cluster_offset to write to the same cluster and set up
+ * the right synchronisation between the in-flight request and
+ * the new one.
+ */
+ ret = handle_dependencies(bs, start, &cur_bytes, m);
+ if (ret == -EAGAIN) {
+ /* Currently handle_dependencies() doesn't yield if we already had
+ * an allocation. If it did, we would have to clean up the L2Meta
+ * structs before starting over. */
+ assert(*m == NULL);
+ goto again;
+ } else if (ret < 0) {
+ return ret;
+ } else if (cur_bytes == 0) {
+ break;
+ } else {
+ /* handle_dependencies() may have decreased cur_bytes (shortened
+ * the allocations below) so that the next dependency is processed
+ * correctly during the next loop iteration. */
+ }
+
+ /*
+ * 2. Count contiguous COPIED clusters.
+ */
+ ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
+ if (ret < 0) {
+ return ret;
+ } else if (ret) {
+ continue;
+ } else if (cur_bytes == 0) {
+ break;
+ }
+
+ /*
+ * 3. If the request still hasn't completed, allocate new clusters,
+ * considering any cluster_offset of steps 1c or 2.
+ */
+ ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
+ if (ret < 0) {
+ return ret;
+ } else if (ret) {
+ continue;
+ } else {
+ assert(cur_bytes == 0);
+ break;
+ }
+ }
+
+ *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS);
+ assert(*num > 0);
+ assert(*host_offset != 0);
+
+ return 0;
+}
+
+static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
+ const uint8_t *buf, int buf_size)
+{
+ z_stream strm1, *strm = &strm1;
+ int ret, out_len;
+
+ memset(strm, 0, sizeof(*strm));
+
+ strm->next_in = (uint8_t *)buf;
+ strm->avail_in = buf_size;
+ strm->next_out = out_buf;
+ strm->avail_out = out_buf_size;
+
+ ret = inflateInit2(strm, -12);
+ if (ret != Z_OK)
+ return -1;
+ ret = inflate(strm, Z_FINISH);
+ out_len = strm->next_out - out_buf;
+ if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
+ out_len != out_buf_size) {
+ inflateEnd(strm);
+ return -1;
+ }
+ inflateEnd(strm);
+ return 0;
+}
+
+int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
+{
+ BDRVQcowState *s = bs->opaque;
+ int ret, csize, nb_csectors, sector_offset;
+ uint64_t coffset;
+
+ coffset = cluster_offset & s->cluster_offset_mask;
+ if (s->cluster_cache_offset != coffset) {
+ nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
+ sector_offset = coffset & 511;
+ csize = nb_csectors * 512 - sector_offset;
+ BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
+ ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
+ if (ret < 0) {
+ return ret;
+ }
+ if (decompress_buffer(s->cluster_cache, s->cluster_size,
+ s->cluster_data + sector_offset, csize) < 0) {
+ return -EIO;
+ }
+ s->cluster_cache_offset = coffset;
+ }
+ return 0;
+}
+
+/*
+ * This discards as many clusters of nb_clusters as possible at once (i.e.
+ * all clusters in the same L2 table) and returns the number of discarded
+ * clusters.
+ */
+static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
+ unsigned int nb_clusters)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t *l2_table;
+ int l2_index;
+ int ret;
+ int i;
+
+ ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* Limit nb_clusters to one L2 table */
+ nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
+
+ for (i = 0; i < nb_clusters; i++) {
+ uint64_t old_offset;
+
+ old_offset = be64_to_cpu(l2_table[l2_index + i]);
+ if ((old_offset & L2E_OFFSET_MASK) == 0) {
+ continue;
+ }
+
+ /* First remove L2 entries */
+ qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
+ l2_table[l2_index + i] = cpu_to_be64(0);
+
+ /* Then decrease the refcount */
+ qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
+ }
+
+ ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
+ if (ret < 0) {
+ return ret;
+ }
+
+ return nb_clusters;
+}
+
+int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
+ int nb_sectors)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t end_offset;
+ unsigned int nb_clusters;
+ int ret;
+
+ end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
+
+ /* Round start up and end down */
+ offset = align_offset(offset, s->cluster_size);
+ end_offset &= ~(s->cluster_size - 1);
+
+ if (offset > end_offset) {
+ return 0;
+ }
+
+ nb_clusters = size_to_clusters(s, end_offset - offset);
+
+ s->cache_discards = true;
+
+ /* Each L2 table is handled by its own loop iteration */
+ while (nb_clusters > 0) {
+ ret = discard_single_l2(bs, offset, nb_clusters);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ nb_clusters -= ret;
+ offset += (ret * s->cluster_size);
+ }
+
+ ret = 0;
+fail:
+ s->cache_discards = false;
+ qcow2_process_discards(bs, ret);
+
+ return ret;
+}
+
+/*
+ * This zeroes as many clusters of nb_clusters as possible at once (i.e.
+ * all clusters in the same L2 table) and returns the number of zeroed
+ * clusters.
+ */
+static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
+ unsigned int nb_clusters)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t *l2_table;
+ int l2_index;
+ int ret;
+ int i;
+
+ ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* Limit nb_clusters to one L2 table */
+ nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
+
+ for (i = 0; i < nb_clusters; i++) {
+ uint64_t old_offset;
+
+ old_offset = be64_to_cpu(l2_table[l2_index + i]);
+
+ /* Update L2 entries */
+ qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
+ if (old_offset & QCOW_OFLAG_COMPRESSED) {
+ l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
+ qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
+ } else {
+ l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
+ }
+ }
+
+ ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
+ if (ret < 0) {
+ return ret;
+ }
+
+ return nb_clusters;
+}
+
+int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
+{
+ BDRVQcowState *s = bs->opaque;
+ unsigned int nb_clusters;
+ int ret;
+
+ /* The zero flag is only supported by version 3 and newer */
+ if (s->qcow_version < 3) {
+ return -ENOTSUP;
+ }
+
+ /* Each L2 table is handled by its own loop iteration */
+ nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
+
+ s->cache_discards = true;
+
+ while (nb_clusters > 0) {
+ ret = zero_single_l2(bs, offset, nb_clusters);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ nb_clusters -= ret;
+ offset += (ret * s->cluster_size);
+ }
+
+ ret = 0;
+fail:
+ s->cache_discards = false;
+ qcow2_process_discards(bs, ret);
+
+ return ret;
+}
diff --git a/contrib/qemu/block/qcow2-refcount.c b/contrib/qemu/block/qcow2-refcount.c
new file mode 100644
index 00000000000..1244693f39e
--- /dev/null
+++ b/contrib/qemu/block/qcow2-refcount.c
@@ -0,0 +1,1374 @@
+/*
+ * Block driver for the QCOW version 2 format
+ *
+ * Copyright (c) 2004-2006 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu-common.h"
+#include "block/block_int.h"
+#include "block/qcow2.h"
+
+static int64_t alloc_clusters_noref(BlockDriverState *bs, int64_t size);
+static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
+ int64_t offset, int64_t length,
+ int addend, enum qcow2_discard_type type);
+
+
+/*********************************************************/
+/* refcount handling */
+
+int qcow2_refcount_init(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ int ret, refcount_table_size2, i;
+
+ refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
+ s->refcount_table = g_malloc(refcount_table_size2);
+ if (s->refcount_table_size > 0) {
+ BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
+ ret = bdrv_pread(bs->file, s->refcount_table_offset,
+ s->refcount_table, refcount_table_size2);
+ if (ret != refcount_table_size2)
+ goto fail;
+ for(i = 0; i < s->refcount_table_size; i++)
+ be64_to_cpus(&s->refcount_table[i]);
+ }
+ return 0;
+ fail:
+ return -ENOMEM;
+}
+
+void qcow2_refcount_close(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ g_free(s->refcount_table);
+}
+
+
+static int load_refcount_block(BlockDriverState *bs,
+ int64_t refcount_block_offset,
+ void **refcount_block)
+{
+ BDRVQcowState *s = bs->opaque;
+ int ret;
+
+ BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
+ ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
+ refcount_block);
+
+ return ret;
+}
+
+/*
+ * Returns the refcount of the cluster given by its index. Any non-negative
+ * return value is the refcount of the cluster, negative values are -errno
+ * and indicate an error.
+ */
+static int get_refcount(BlockDriverState *bs, int64_t cluster_index)
+{
+ BDRVQcowState *s = bs->opaque;
+ int refcount_table_index, block_index;
+ int64_t refcount_block_offset;
+ int ret;
+ uint16_t *refcount_block;
+ uint16_t refcount;
+
+ refcount_table_index = cluster_index >> (s->cluster_bits - REFCOUNT_SHIFT);
+ if (refcount_table_index >= s->refcount_table_size)
+ return 0;
+ refcount_block_offset = s->refcount_table[refcount_table_index];
+ if (!refcount_block_offset)
+ return 0;
+
+ ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
+ (void**) &refcount_block);
+ if (ret < 0) {
+ return ret;
+ }
+
+ block_index = cluster_index &
+ ((1 << (s->cluster_bits - REFCOUNT_SHIFT)) - 1);
+ refcount = be16_to_cpu(refcount_block[block_index]);
+
+ ret = qcow2_cache_put(bs, s->refcount_block_cache,
+ (void**) &refcount_block);
+ if (ret < 0) {
+ return ret;
+ }
+
+ return refcount;
+}
+
+/*
+ * Rounds the refcount table size up to avoid growing the table for each single
+ * refcount block that is allocated.
+ */
+static unsigned int next_refcount_table_size(BDRVQcowState *s,
+ unsigned int min_size)
+{
+ unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
+ unsigned int refcount_table_clusters =
+ MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
+
+ while (min_clusters > refcount_table_clusters) {
+ refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
+ }
+
+ return refcount_table_clusters << (s->cluster_bits - 3);
+}
+
+
+/* Checks if two offsets are described by the same refcount block */
+static int in_same_refcount_block(BDRVQcowState *s, uint64_t offset_a,
+ uint64_t offset_b)
+{
+ uint64_t block_a = offset_a >> (2 * s->cluster_bits - REFCOUNT_SHIFT);
+ uint64_t block_b = offset_b >> (2 * s->cluster_bits - REFCOUNT_SHIFT);
+
+ return (block_a == block_b);
+}
+
+/*
+ * Loads a refcount block. If it doesn't exist yet, it is allocated first
+ * (including growing the refcount table if needed).
+ *
+ * Returns 0 on success or -errno in error case
+ */
+static int alloc_refcount_block(BlockDriverState *bs,
+ int64_t cluster_index, uint16_t **refcount_block)
+{
+ BDRVQcowState *s = bs->opaque;
+ unsigned int refcount_table_index;
+ int ret;
+
+ BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
+
+ /* Find the refcount block for the given cluster */
+ refcount_table_index = cluster_index >> (s->cluster_bits - REFCOUNT_SHIFT);
+
+ if (refcount_table_index < s->refcount_table_size) {
+
+ uint64_t refcount_block_offset =
+ s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
+
+ /* If it's already there, we're done */
+ if (refcount_block_offset) {
+ return load_refcount_block(bs, refcount_block_offset,
+ (void**) refcount_block);
+ }
+ }
+
+ /*
+ * If we came here, we need to allocate something. Something is at least
+ * a cluster for the new refcount block. It may also include a new refcount
+ * table if the old refcount table is too small.
+ *
+ * Note that allocating clusters here needs some special care:
+ *
+ * - We can't use the normal qcow2_alloc_clusters(), it would try to
+ * increase the refcount and very likely we would end up with an endless
+ * recursion. Instead we must place the refcount blocks in a way that
+ * they can describe them themselves.
+ *
+ * - We need to consider that at this point we are inside update_refcounts
+ * and doing the initial refcount increase. This means that some clusters
+ * have already been allocated by the caller, but their refcount isn't
+ * accurate yet. free_cluster_index tells us where this allocation ends
+ * as long as we don't overwrite it by freeing clusters.
+ *
+ * - alloc_clusters_noref and qcow2_free_clusters may load a different
+ * refcount block into the cache
+ */
+
+ *refcount_block = NULL;
+
+ /* We write to the refcount table, so we might depend on L2 tables */
+ ret = qcow2_cache_flush(bs, s->l2_table_cache);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* Allocate the refcount block itself and mark it as used */
+ int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
+ if (new_block < 0) {
+ return new_block;
+ }
+
+#ifdef DEBUG_ALLOC2
+ fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
+ " at %" PRIx64 "\n",
+ refcount_table_index, cluster_index << s->cluster_bits, new_block);
+#endif
+
+ if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
+ /* Zero the new refcount block before updating it */
+ ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
+ (void**) refcount_block);
+ if (ret < 0) {
+ goto fail_block;
+ }
+
+ memset(*refcount_block, 0, s->cluster_size);
+
+ /* The block describes itself, need to update the cache */
+ int block_index = (new_block >> s->cluster_bits) &
+ ((1 << (s->cluster_bits - REFCOUNT_SHIFT)) - 1);
+ (*refcount_block)[block_index] = cpu_to_be16(1);
+ } else {
+ /* Described somewhere else. This can recurse at most twice before we
+ * arrive at a block that describes itself. */
+ ret = update_refcount(bs, new_block, s->cluster_size, 1,
+ QCOW2_DISCARD_NEVER);
+ if (ret < 0) {
+ goto fail_block;
+ }
+
+ ret = qcow2_cache_flush(bs, s->refcount_block_cache);
+ if (ret < 0) {
+ goto fail_block;
+ }
+
+ /* Initialize the new refcount block only after updating its refcount,
+ * update_refcount uses the refcount cache itself */
+ ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
+ (void**) refcount_block);
+ if (ret < 0) {
+ goto fail_block;
+ }
+
+ memset(*refcount_block, 0, s->cluster_size);
+ }
+
+ /* Now the new refcount block needs to be written to disk */
+ BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
+ qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
+ ret = qcow2_cache_flush(bs, s->refcount_block_cache);
+ if (ret < 0) {
+ goto fail_block;
+ }
+
+ /* If the refcount table is big enough, just hook the block up there */
+ if (refcount_table_index < s->refcount_table_size) {
+ uint64_t data64 = cpu_to_be64(new_block);
+ BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
+ ret = bdrv_pwrite_sync(bs->file,
+ s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
+ &data64, sizeof(data64));
+ if (ret < 0) {
+ goto fail_block;
+ }
+
+ s->refcount_table[refcount_table_index] = new_block;
+ return 0;
+ }
+
+ ret = qcow2_cache_put(bs, s->refcount_block_cache, (void**) refcount_block);
+ if (ret < 0) {
+ goto fail_block;
+ }
+
+ /*
+ * If we come here, we need to grow the refcount table. Again, a new
+ * refcount table needs some space and we can't simply allocate to avoid
+ * endless recursion.
+ *
+ * Therefore let's grab new refcount blocks at the end of the image, which
+ * will describe themselves and the new refcount table. This way we can
+ * reference them only in the new table and do the switch to the new
+ * refcount table at once without producing an inconsistent state in
+ * between.
+ */
+ BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
+
+ /* Calculate the number of refcount blocks needed so far */
+ uint64_t refcount_block_clusters = 1 << (s->cluster_bits - REFCOUNT_SHIFT);
+ uint64_t blocks_used = (s->free_cluster_index +
+ refcount_block_clusters - 1) / refcount_block_clusters;
+
+ /* And now we need at least one block more for the new metadata */
+ uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
+ uint64_t last_table_size;
+ uint64_t blocks_clusters;
+ do {
+ uint64_t table_clusters =
+ size_to_clusters(s, table_size * sizeof(uint64_t));
+ blocks_clusters = 1 +
+ ((table_clusters + refcount_block_clusters - 1)
+ / refcount_block_clusters);
+ uint64_t meta_clusters = table_clusters + blocks_clusters;
+
+ last_table_size = table_size;
+ table_size = next_refcount_table_size(s, blocks_used +
+ ((meta_clusters + refcount_block_clusters - 1)
+ / refcount_block_clusters));
+
+ } while (last_table_size != table_size);
+
+#ifdef DEBUG_ALLOC2
+ fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
+ s->refcount_table_size, table_size);
+#endif
+
+ /* Create the new refcount table and blocks */
+ uint64_t meta_offset = (blocks_used * refcount_block_clusters) *
+ s->cluster_size;
+ uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
+ uint16_t *new_blocks = g_malloc0(blocks_clusters * s->cluster_size);
+ uint64_t *new_table = g_malloc0(table_size * sizeof(uint64_t));
+
+ assert(meta_offset >= (s->free_cluster_index * s->cluster_size));
+
+ /* Fill the new refcount table */
+ memcpy(new_table, s->refcount_table,
+ s->refcount_table_size * sizeof(uint64_t));
+ new_table[refcount_table_index] = new_block;
+
+ int i;
+ for (i = 0; i < blocks_clusters; i++) {
+ new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
+ }
+
+ /* Fill the refcount blocks */
+ uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
+ int block = 0;
+ for (i = 0; i < table_clusters + blocks_clusters; i++) {
+ new_blocks[block++] = cpu_to_be16(1);
+ }
+
+ /* Write refcount blocks to disk */
+ BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
+ ret = bdrv_pwrite_sync(bs->file, meta_offset, new_blocks,
+ blocks_clusters * s->cluster_size);
+ g_free(new_blocks);
+ if (ret < 0) {
+ goto fail_table;
+ }
+
+ /* Write refcount table to disk */
+ for(i = 0; i < table_size; i++) {
+ cpu_to_be64s(&new_table[i]);
+ }
+
+ BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
+ ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
+ table_size * sizeof(uint64_t));
+ if (ret < 0) {
+ goto fail_table;
+ }
+
+ for(i = 0; i < table_size; i++) {
+ be64_to_cpus(&new_table[i]);
+ }
+
+ /* Hook up the new refcount table in the qcow2 header */
+ uint8_t data[12];
+ cpu_to_be64w((uint64_t*)data, table_offset);
+ cpu_to_be32w((uint32_t*)(data + 8), table_clusters);
+ BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
+ ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, refcount_table_offset),
+ data, sizeof(data));
+ if (ret < 0) {
+ goto fail_table;
+ }
+
+ /* And switch it in memory */
+ uint64_t old_table_offset = s->refcount_table_offset;
+ uint64_t old_table_size = s->refcount_table_size;
+
+ g_free(s->refcount_table);
+ s->refcount_table = new_table;
+ s->refcount_table_size = table_size;
+ s->refcount_table_offset = table_offset;
+
+ /* Free old table. Remember, we must not change free_cluster_index */
+ uint64_t old_free_cluster_index = s->free_cluster_index;
+ qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
+ QCOW2_DISCARD_OTHER);
+ s->free_cluster_index = old_free_cluster_index;
+
+ ret = load_refcount_block(bs, new_block, (void**) refcount_block);
+ if (ret < 0) {
+ return ret;
+ }
+
+ return 0;
+
+fail_table:
+ g_free(new_table);
+fail_block:
+ if (*refcount_block != NULL) {
+ qcow2_cache_put(bs, s->refcount_block_cache, (void**) refcount_block);
+ }
+ return ret;
+}
+
+void qcow2_process_discards(BlockDriverState *bs, int ret)
+{
+ BDRVQcowState *s = bs->opaque;
+ Qcow2DiscardRegion *d, *next;
+
+ QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
+ QTAILQ_REMOVE(&s->discards, d, next);
+
+ /* Discard is optional, ignore the return value */
+ if (ret >= 0) {
+ bdrv_discard(bs->file,
+ d->offset >> BDRV_SECTOR_BITS,
+ d->bytes >> BDRV_SECTOR_BITS);
+ }
+
+ g_free(d);
+ }
+}
+
+static void update_refcount_discard(BlockDriverState *bs,
+ uint64_t offset, uint64_t length)
+{
+ BDRVQcowState *s = bs->opaque;
+ Qcow2DiscardRegion *d, *p, *next;
+
+ QTAILQ_FOREACH(d, &s->discards, next) {
+ uint64_t new_start = MIN(offset, d->offset);
+ uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
+
+ if (new_end - new_start <= length + d->bytes) {
+ /* There can't be any overlap, areas ending up here have no
+ * references any more and therefore shouldn't get freed another
+ * time. */
+ assert(d->bytes + length == new_end - new_start);
+ d->offset = new_start;
+ d->bytes = new_end - new_start;
+ goto found;
+ }
+ }
+
+ d = g_malloc(sizeof(*d));
+ *d = (Qcow2DiscardRegion) {
+ .bs = bs,
+ .offset = offset,
+ .bytes = length,
+ };
+ QTAILQ_INSERT_TAIL(&s->discards, d, next);
+
+found:
+ /* Merge discard requests if they are adjacent now */
+ QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
+ if (p == d
+ || p->offset > d->offset + d->bytes
+ || d->offset > p->offset + p->bytes)
+ {
+ continue;
+ }
+
+ /* Still no overlap possible */
+ assert(p->offset == d->offset + d->bytes
+ || d->offset == p->offset + p->bytes);
+
+ QTAILQ_REMOVE(&s->discards, p, next);
+ d->offset = MIN(d->offset, p->offset);
+ d->bytes += p->bytes;
+ }
+}
+
+/* XXX: cache several refcount block clusters ? */
+static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
+ int64_t offset, int64_t length, int addend, enum qcow2_discard_type type)
+{
+ BDRVQcowState *s = bs->opaque;
+ int64_t start, last, cluster_offset;
+ uint16_t *refcount_block = NULL;
+ int64_t old_table_index = -1;
+ int ret;
+
+#ifdef DEBUG_ALLOC2
+ fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64 " addend=%d\n",
+ offset, length, addend);
+#endif
+ if (length < 0) {
+ return -EINVAL;
+ } else if (length == 0) {
+ return 0;
+ }
+
+ if (addend < 0) {
+ qcow2_cache_set_dependency(bs, s->refcount_block_cache,
+ s->l2_table_cache);
+ }
+
+ start = offset & ~(s->cluster_size - 1);
+ last = (offset + length - 1) & ~(s->cluster_size - 1);
+ for(cluster_offset = start; cluster_offset <= last;
+ cluster_offset += s->cluster_size)
+ {
+ int block_index, refcount;
+ int64_t cluster_index = cluster_offset >> s->cluster_bits;
+ int64_t table_index =
+ cluster_index >> (s->cluster_bits - REFCOUNT_SHIFT);
+
+ /* Load the refcount block and allocate it if needed */
+ if (table_index != old_table_index) {
+ if (refcount_block) {
+ ret = qcow2_cache_put(bs, s->refcount_block_cache,
+ (void**) &refcount_block);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+
+ ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+ old_table_index = table_index;
+
+ qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
+
+ /* we can update the count and save it */
+ block_index = cluster_index &
+ ((1 << (s->cluster_bits - REFCOUNT_SHIFT)) - 1);
+
+ refcount = be16_to_cpu(refcount_block[block_index]);
+ refcount += addend;
+ if (refcount < 0 || refcount > 0xffff) {
+ ret = -EINVAL;
+ goto fail;
+ }
+ if (refcount == 0 && cluster_index < s->free_cluster_index) {
+ s->free_cluster_index = cluster_index;
+ }
+ refcount_block[block_index] = cpu_to_be16(refcount);
+
+ if (refcount == 0 && s->discard_passthrough[type]) {
+ update_refcount_discard(bs, cluster_offset, s->cluster_size);
+ }
+ }
+
+ ret = 0;
+fail:
+ if (!s->cache_discards) {
+ qcow2_process_discards(bs, ret);
+ }
+
+ /* Write last changed block to disk */
+ if (refcount_block) {
+ int wret;
+ wret = qcow2_cache_put(bs, s->refcount_block_cache,
+ (void**) &refcount_block);
+ if (wret < 0) {
+ return ret < 0 ? ret : wret;
+ }
+ }
+
+ /*
+ * Try do undo any updates if an error is returned (This may succeed in
+ * some cases like ENOSPC for allocating a new refcount block)
+ */
+ if (ret < 0) {
+ int dummy;
+ dummy = update_refcount(bs, offset, cluster_offset - offset, -addend,
+ QCOW2_DISCARD_NEVER);
+ (void)dummy;
+ }
+
+ return ret;
+}
+
+/*
+ * Increases or decreases the refcount of a given cluster by one.
+ * addend must be 1 or -1.
+ *
+ * If the return value is non-negative, it is the new refcount of the cluster.
+ * If it is negative, it is -errno and indicates an error.
+ */
+static int update_cluster_refcount(BlockDriverState *bs,
+ int64_t cluster_index,
+ int addend,
+ enum qcow2_discard_type type)
+{
+ BDRVQcowState *s = bs->opaque;
+ int ret;
+
+ ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
+ type);
+ if (ret < 0) {
+ return ret;
+ }
+
+ return get_refcount(bs, cluster_index);
+}
+
+
+
+/*********************************************************/
+/* cluster allocation functions */
+
+
+
+/* return < 0 if error */
+static int64_t alloc_clusters_noref(BlockDriverState *bs, int64_t size)
+{
+ BDRVQcowState *s = bs->opaque;
+ int i, nb_clusters, refcount;
+
+ nb_clusters = size_to_clusters(s, size);
+retry:
+ for(i = 0; i < nb_clusters; i++) {
+ int64_t next_cluster_index = s->free_cluster_index++;
+ refcount = get_refcount(bs, next_cluster_index);
+
+ if (refcount < 0) {
+ return refcount;
+ } else if (refcount != 0) {
+ goto retry;
+ }
+ }
+#ifdef DEBUG_ALLOC2
+ fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
+ size,
+ (s->free_cluster_index - nb_clusters) << s->cluster_bits);
+#endif
+ return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
+}
+
+int64_t qcow2_alloc_clusters(BlockDriverState *bs, int64_t size)
+{
+ int64_t offset;
+ int ret;
+
+ BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
+ offset = alloc_clusters_noref(bs, size);
+ if (offset < 0) {
+ return offset;
+ }
+
+ ret = update_refcount(bs, offset, size, 1, QCOW2_DISCARD_NEVER);
+ if (ret < 0) {
+ return ret;
+ }
+
+ return offset;
+}
+
+int qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
+ int nb_clusters)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t cluster_index;
+ uint64_t old_free_cluster_index;
+ int i, refcount, ret;
+
+ /* Check how many clusters there are free */
+ cluster_index = offset >> s->cluster_bits;
+ for(i = 0; i < nb_clusters; i++) {
+ refcount = get_refcount(bs, cluster_index++);
+
+ if (refcount < 0) {
+ return refcount;
+ } else if (refcount != 0) {
+ break;
+ }
+ }
+
+ /* And then allocate them */
+ old_free_cluster_index = s->free_cluster_index;
+ s->free_cluster_index = cluster_index + i;
+
+ ret = update_refcount(bs, offset, i << s->cluster_bits, 1,
+ QCOW2_DISCARD_NEVER);
+ if (ret < 0) {
+ return ret;
+ }
+
+ s->free_cluster_index = old_free_cluster_index;
+
+ return i;
+}
+
+/* only used to allocate compressed sectors. We try to allocate
+ contiguous sectors. size must be <= cluster_size */
+int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
+{
+ BDRVQcowState *s = bs->opaque;
+ int64_t offset, cluster_offset;
+ int free_in_cluster;
+
+ BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
+ assert(size > 0 && size <= s->cluster_size);
+ if (s->free_byte_offset == 0) {
+ offset = qcow2_alloc_clusters(bs, s->cluster_size);
+ if (offset < 0) {
+ return offset;
+ }
+ s->free_byte_offset = offset;
+ }
+ redo:
+ free_in_cluster = s->cluster_size -
+ (s->free_byte_offset & (s->cluster_size - 1));
+ if (size <= free_in_cluster) {
+ /* enough space in current cluster */
+ offset = s->free_byte_offset;
+ s->free_byte_offset += size;
+ free_in_cluster -= size;
+ if (free_in_cluster == 0)
+ s->free_byte_offset = 0;
+ if ((offset & (s->cluster_size - 1)) != 0)
+ update_cluster_refcount(bs, offset >> s->cluster_bits, 1,
+ QCOW2_DISCARD_NEVER);
+ } else {
+ offset = qcow2_alloc_clusters(bs, s->cluster_size);
+ if (offset < 0) {
+ return offset;
+ }
+ cluster_offset = s->free_byte_offset & ~(s->cluster_size - 1);
+ if ((cluster_offset + s->cluster_size) == offset) {
+ /* we are lucky: contiguous data */
+ offset = s->free_byte_offset;
+ update_cluster_refcount(bs, offset >> s->cluster_bits, 1,
+ QCOW2_DISCARD_NEVER);
+ s->free_byte_offset += size;
+ } else {
+ s->free_byte_offset = offset;
+ goto redo;
+ }
+ }
+
+ /* The cluster refcount was incremented, either by qcow2_alloc_clusters()
+ * or explicitly by update_cluster_refcount(). Refcount blocks must be
+ * flushed before the caller's L2 table updates.
+ */
+ qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
+ return offset;
+}
+
+void qcow2_free_clusters(BlockDriverState *bs,
+ int64_t offset, int64_t size,
+ enum qcow2_discard_type type)
+{
+ int ret;
+
+ BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
+ ret = update_refcount(bs, offset, size, -1, type);
+ if (ret < 0) {
+ fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
+ /* TODO Remember the clusters to free them later and avoid leaking */
+ }
+}
+
+/*
+ * Free a cluster using its L2 entry (handles clusters of all types, e.g.
+ * normal cluster, compressed cluster, etc.)
+ */
+void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
+ int nb_clusters, enum qcow2_discard_type type)
+{
+ BDRVQcowState *s = bs->opaque;
+
+ switch (qcow2_get_cluster_type(l2_entry)) {
+ case QCOW2_CLUSTER_COMPRESSED:
+ {
+ int nb_csectors;
+ nb_csectors = ((l2_entry >> s->csize_shift) &
+ s->csize_mask) + 1;
+ qcow2_free_clusters(bs,
+ (l2_entry & s->cluster_offset_mask) & ~511,
+ nb_csectors * 512, type);
+ }
+ break;
+ case QCOW2_CLUSTER_NORMAL:
+ qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
+ nb_clusters << s->cluster_bits, type);
+ break;
+ case QCOW2_CLUSTER_UNALLOCATED:
+ case QCOW2_CLUSTER_ZERO:
+ break;
+ default:
+ abort();
+ }
+}
+
+
+
+/*********************************************************/
+/* snapshots and image creation */
+
+
+
+/* update the refcounts of snapshots and the copied flag */
+int qcow2_update_snapshot_refcount(BlockDriverState *bs,
+ int64_t l1_table_offset, int l1_size, int addend)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, l1_allocated;
+ int64_t old_offset, old_l2_offset;
+ int i, j, l1_modified = 0, nb_csectors, refcount;
+ int ret;
+
+ l2_table = NULL;
+ l1_table = NULL;
+ l1_size2 = l1_size * sizeof(uint64_t);
+
+ s->cache_discards = true;
+
+ /* WARNING: qcow2_snapshot_goto relies on this function not using the
+ * l1_table_offset when it is the current s->l1_table_offset! Be careful
+ * when changing this! */
+ if (l1_table_offset != s->l1_table_offset) {
+ l1_table = g_malloc0(align_offset(l1_size2, 512));
+ l1_allocated = 1;
+
+ ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ for(i = 0;i < l1_size; i++)
+ be64_to_cpus(&l1_table[i]);
+ } else {
+ assert(l1_size == s->l1_size);
+ l1_table = s->l1_table;
+ l1_allocated = 0;
+ }
+
+ for(i = 0; i < l1_size; i++) {
+ l2_offset = l1_table[i];
+ if (l2_offset) {
+ old_l2_offset = l2_offset;
+ l2_offset &= L1E_OFFSET_MASK;
+
+ ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
+ (void**) &l2_table);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ for(j = 0; j < s->l2_size; j++) {
+ offset = be64_to_cpu(l2_table[j]);
+ if (offset != 0) {
+ old_offset = offset;
+ offset &= ~QCOW_OFLAG_COPIED;
+ if (offset & QCOW_OFLAG_COMPRESSED) {
+ nb_csectors = ((offset >> s->csize_shift) &
+ s->csize_mask) + 1;
+ if (addend != 0) {
+ int ret;
+ ret = update_refcount(bs,
+ (offset & s->cluster_offset_mask) & ~511,
+ nb_csectors * 512, addend,
+ QCOW2_DISCARD_SNAPSHOT);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+ /* compressed clusters are never modified */
+ refcount = 2;
+ } else {
+ uint64_t cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits;
+ if (addend != 0) {
+ refcount = update_cluster_refcount(bs, cluster_index, addend,
+ QCOW2_DISCARD_SNAPSHOT);
+ } else {
+ refcount = get_refcount(bs, cluster_index);
+ }
+
+ if (refcount < 0) {
+ ret = refcount;
+ goto fail;
+ }
+ }
+
+ if (refcount == 1) {
+ offset |= QCOW_OFLAG_COPIED;
+ }
+ if (offset != old_offset) {
+ if (addend > 0) {
+ qcow2_cache_set_dependency(bs, s->l2_table_cache,
+ s->refcount_block_cache);
+ }
+ l2_table[j] = cpu_to_be64(offset);
+ qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
+ }
+ }
+ }
+
+ ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
+ if (ret < 0) {
+ goto fail;
+ }
+
+
+ if (addend != 0) {
+ refcount = update_cluster_refcount(bs, l2_offset >> s->cluster_bits, addend,
+ QCOW2_DISCARD_SNAPSHOT);
+ } else {
+ refcount = get_refcount(bs, l2_offset >> s->cluster_bits);
+ }
+ if (refcount < 0) {
+ ret = refcount;
+ goto fail;
+ } else if (refcount == 1) {
+ l2_offset |= QCOW_OFLAG_COPIED;
+ }
+ if (l2_offset != old_l2_offset) {
+ l1_table[i] = l2_offset;
+ l1_modified = 1;
+ }
+ }
+ }
+
+ ret = bdrv_flush(bs);
+fail:
+ if (l2_table) {
+ qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
+ }
+
+ s->cache_discards = false;
+ qcow2_process_discards(bs, ret);
+
+ /* Update L1 only if it isn't deleted anyway (addend = -1) */
+ if (ret == 0 && addend >= 0 && l1_modified) {
+ for (i = 0; i < l1_size; i++) {
+ cpu_to_be64s(&l1_table[i]);
+ }
+
+ ret = bdrv_pwrite_sync(bs->file, l1_table_offset, l1_table, l1_size2);
+
+ for (i = 0; i < l1_size; i++) {
+ be64_to_cpus(&l1_table[i]);
+ }
+ }
+ if (l1_allocated)
+ g_free(l1_table);
+ return ret;
+}
+
+
+
+
+/*********************************************************/
+/* refcount checking functions */
+
+
+
+/*
+ * Increases the refcount for a range of clusters in a given refcount table.
+ * This is used to construct a temporary refcount table out of L1 and L2 tables
+ * which can be compared the the refcount table saved in the image.
+ *
+ * Modifies the number of errors in res.
+ */
+static void inc_refcounts(BlockDriverState *bs,
+ BdrvCheckResult *res,
+ uint16_t *refcount_table,
+ int refcount_table_size,
+ int64_t offset, int64_t size)
+{
+ BDRVQcowState *s = bs->opaque;
+ int64_t start, last, cluster_offset;
+ int k;
+
+ if (size <= 0)
+ return;
+
+ start = offset & ~(s->cluster_size - 1);
+ last = (offset + size - 1) & ~(s->cluster_size - 1);
+ for(cluster_offset = start; cluster_offset <= last;
+ cluster_offset += s->cluster_size) {
+ k = cluster_offset >> s->cluster_bits;
+ if (k < 0) {
+ fprintf(stderr, "ERROR: invalid cluster offset=0x%" PRIx64 "\n",
+ cluster_offset);
+ res->corruptions++;
+ } else if (k >= refcount_table_size) {
+ fprintf(stderr, "Warning: cluster offset=0x%" PRIx64 " is after "
+ "the end of the image file, can't properly check refcounts.\n",
+ cluster_offset);
+ res->check_errors++;
+ } else {
+ if (++refcount_table[k] == 0) {
+ fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
+ "\n", cluster_offset);
+ res->corruptions++;
+ }
+ }
+ }
+}
+
+/* Flags for check_refcounts_l1() and check_refcounts_l2() */
+enum {
+ CHECK_OFLAG_COPIED = 0x1, /* check QCOW_OFLAG_COPIED matches refcount */
+ CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
+};
+
+/*
+ * Increases the refcount in the given refcount table for the all clusters
+ * referenced in the L2 table. While doing so, performs some checks on L2
+ * entries.
+ *
+ * Returns the number of errors found by the checks or -errno if an internal
+ * error occurred.
+ */
+static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
+ uint16_t *refcount_table, int refcount_table_size, int64_t l2_offset,
+ int flags)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t *l2_table, l2_entry;
+ uint64_t next_contiguous_offset = 0;
+ int i, l2_size, nb_csectors, refcount;
+
+ /* Read L2 table from disk */
+ l2_size = s->l2_size * sizeof(uint64_t);
+ l2_table = g_malloc(l2_size);
+
+ if (bdrv_pread(bs->file, l2_offset, l2_table, l2_size) != l2_size)
+ goto fail;
+
+ /* Do the actual checks */
+ for(i = 0; i < s->l2_size; i++) {
+ l2_entry = be64_to_cpu(l2_table[i]);
+
+ switch (qcow2_get_cluster_type(l2_entry)) {
+ case QCOW2_CLUSTER_COMPRESSED:
+ /* Compressed clusters don't have QCOW_OFLAG_COPIED */
+ if (l2_entry & QCOW_OFLAG_COPIED) {
+ fprintf(stderr, "ERROR: cluster %" PRId64 ": "
+ "copied flag must never be set for compressed "
+ "clusters\n", l2_entry >> s->cluster_bits);
+ l2_entry &= ~QCOW_OFLAG_COPIED;
+ res->corruptions++;
+ }
+
+ /* Mark cluster as used */
+ nb_csectors = ((l2_entry >> s->csize_shift) &
+ s->csize_mask) + 1;
+ l2_entry &= s->cluster_offset_mask;
+ inc_refcounts(bs, res, refcount_table, refcount_table_size,
+ l2_entry & ~511, nb_csectors * 512);
+
+ if (flags & CHECK_FRAG_INFO) {
+ res->bfi.allocated_clusters++;
+ res->bfi.compressed_clusters++;
+
+ /* Compressed clusters are fragmented by nature. Since they
+ * take up sub-sector space but we only have sector granularity
+ * I/O we need to re-read the same sectors even for adjacent
+ * compressed clusters.
+ */
+ res->bfi.fragmented_clusters++;
+ }
+ break;
+
+ case QCOW2_CLUSTER_ZERO:
+ if ((l2_entry & L2E_OFFSET_MASK) == 0) {
+ break;
+ }
+ /* fall through */
+
+ case QCOW2_CLUSTER_NORMAL:
+ {
+ /* QCOW_OFLAG_COPIED must be set iff refcount == 1 */
+ uint64_t offset = l2_entry & L2E_OFFSET_MASK;
+
+ if (flags & CHECK_OFLAG_COPIED) {
+ refcount = get_refcount(bs, offset >> s->cluster_bits);
+ if (refcount < 0) {
+ fprintf(stderr, "Can't get refcount for offset %"
+ PRIx64 ": %s\n", l2_entry, strerror(-refcount));
+ goto fail;
+ }
+ if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
+ fprintf(stderr, "ERROR OFLAG_COPIED: offset=%"
+ PRIx64 " refcount=%d\n", l2_entry, refcount);
+ res->corruptions++;
+ }
+ }
+
+ if (flags & CHECK_FRAG_INFO) {
+ res->bfi.allocated_clusters++;
+ if (next_contiguous_offset &&
+ offset != next_contiguous_offset) {
+ res->bfi.fragmented_clusters++;
+ }
+ next_contiguous_offset = offset + s->cluster_size;
+ }
+
+ /* Mark cluster as used */
+ inc_refcounts(bs, res, refcount_table,refcount_table_size,
+ offset, s->cluster_size);
+
+ /* Correct offsets are cluster aligned */
+ if (offset & (s->cluster_size - 1)) {
+ fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
+ "properly aligned; L2 entry corrupted.\n", offset);
+ res->corruptions++;
+ }
+ break;
+ }
+
+ case QCOW2_CLUSTER_UNALLOCATED:
+ break;
+
+ default:
+ abort();
+ }
+ }
+
+ g_free(l2_table);
+ return 0;
+
+fail:
+ fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
+ g_free(l2_table);
+ return -EIO;
+}
+
+/*
+ * Increases the refcount for the L1 table, its L2 tables and all referenced
+ * clusters in the given refcount table. While doing so, performs some checks
+ * on L1 and L2 entries.
+ *
+ * Returns the number of errors found by the checks or -errno if an internal
+ * error occurred.
+ */
+static int check_refcounts_l1(BlockDriverState *bs,
+ BdrvCheckResult *res,
+ uint16_t *refcount_table,
+ int refcount_table_size,
+ int64_t l1_table_offset, int l1_size,
+ int flags)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t *l1_table, l2_offset, l1_size2;
+ int i, refcount, ret;
+
+ l1_size2 = l1_size * sizeof(uint64_t);
+
+ /* Mark L1 table as used */
+ inc_refcounts(bs, res, refcount_table, refcount_table_size,
+ l1_table_offset, l1_size2);
+
+ /* Read L1 table entries from disk */
+ if (l1_size2 == 0) {
+ l1_table = NULL;
+ } else {
+ l1_table = g_malloc(l1_size2);
+ if (bdrv_pread(bs->file, l1_table_offset,
+ l1_table, l1_size2) != l1_size2)
+ goto fail;
+ for(i = 0;i < l1_size; i++)
+ be64_to_cpus(&l1_table[i]);
+ }
+
+ /* Do the actual checks */
+ for(i = 0; i < l1_size; i++) {
+ l2_offset = l1_table[i];
+ if (l2_offset) {
+ /* QCOW_OFLAG_COPIED must be set iff refcount == 1 */
+ if (flags & CHECK_OFLAG_COPIED) {
+ refcount = get_refcount(bs, (l2_offset & ~QCOW_OFLAG_COPIED)
+ >> s->cluster_bits);
+ if (refcount < 0) {
+ fprintf(stderr, "Can't get refcount for l2_offset %"
+ PRIx64 ": %s\n", l2_offset, strerror(-refcount));
+ goto fail;
+ }
+ if ((refcount == 1) != ((l2_offset & QCOW_OFLAG_COPIED) != 0)) {
+ fprintf(stderr, "ERROR OFLAG_COPIED: l2_offset=%" PRIx64
+ " refcount=%d\n", l2_offset, refcount);
+ res->corruptions++;
+ }
+ }
+
+ /* Mark L2 table as used */
+ l2_offset &= L1E_OFFSET_MASK;
+ inc_refcounts(bs, res, refcount_table, refcount_table_size,
+ l2_offset, s->cluster_size);
+
+ /* L2 tables are cluster aligned */
+ if (l2_offset & (s->cluster_size - 1)) {
+ fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
+ "cluster aligned; L1 entry corrupted\n", l2_offset);
+ res->corruptions++;
+ }
+
+ /* Process and check L2 entries */
+ ret = check_refcounts_l2(bs, res, refcount_table,
+ refcount_table_size, l2_offset, flags);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+ }
+ g_free(l1_table);
+ return 0;
+
+fail:
+ fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
+ res->check_errors++;
+ g_free(l1_table);
+ return -EIO;
+}
+
+/*
+ * Checks an image for refcount consistency.
+ *
+ * Returns 0 if no errors are found, the number of errors in case the image is
+ * detected as corrupted, and -errno when an internal error occurred.
+ */
+int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
+ BdrvCheckMode fix)
+{
+ BDRVQcowState *s = bs->opaque;
+ int64_t size, i, highest_cluster;
+ int nb_clusters, refcount1, refcount2;
+ QCowSnapshot *sn;
+ uint16_t *refcount_table;
+ int ret;
+
+ size = bdrv_getlength(bs->file);
+ nb_clusters = size_to_clusters(s, size);
+ refcount_table = g_malloc0(nb_clusters * sizeof(uint16_t));
+
+ res->bfi.total_clusters =
+ size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
+
+ /* header */
+ inc_refcounts(bs, res, refcount_table, nb_clusters,
+ 0, s->cluster_size);
+
+ /* current L1 table */
+ ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
+ s->l1_table_offset, s->l1_size,
+ CHECK_OFLAG_COPIED | CHECK_FRAG_INFO);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /* snapshots */
+ for(i = 0; i < s->nb_snapshots; i++) {
+ sn = s->snapshots + i;
+ ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
+ sn->l1_table_offset, sn->l1_size, 0);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+ inc_refcounts(bs, res, refcount_table, nb_clusters,
+ s->snapshots_offset, s->snapshots_size);
+
+ /* refcount data */
+ inc_refcounts(bs, res, refcount_table, nb_clusters,
+ s->refcount_table_offset,
+ s->refcount_table_size * sizeof(uint64_t));
+
+ for(i = 0; i < s->refcount_table_size; i++) {
+ uint64_t offset, cluster;
+ offset = s->refcount_table[i];
+ cluster = offset >> s->cluster_bits;
+
+ /* Refcount blocks are cluster aligned */
+ if (offset & (s->cluster_size - 1)) {
+ fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
+ "cluster aligned; refcount table entry corrupted\n", i);
+ res->corruptions++;
+ continue;
+ }
+
+ if (cluster >= nb_clusters) {
+ fprintf(stderr, "ERROR refcount block %" PRId64
+ " is outside image\n", i);
+ res->corruptions++;
+ continue;
+ }
+
+ if (offset != 0) {
+ inc_refcounts(bs, res, refcount_table, nb_clusters,
+ offset, s->cluster_size);
+ if (refcount_table[cluster] != 1) {
+ fprintf(stderr, "ERROR refcount block %" PRId64
+ " refcount=%d\n",
+ i, refcount_table[cluster]);
+ res->corruptions++;
+ }
+ }
+ }
+
+ /* compare ref counts */
+ for (i = 0, highest_cluster = 0; i < nb_clusters; i++) {
+ refcount1 = get_refcount(bs, i);
+ if (refcount1 < 0) {
+ fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
+ i, strerror(-refcount1));
+ res->check_errors++;
+ continue;
+ }
+
+ refcount2 = refcount_table[i];
+
+ if (refcount1 > 0 || refcount2 > 0) {
+ highest_cluster = i;
+ }
+
+ if (refcount1 != refcount2) {
+
+ /* Check if we're allowed to fix the mismatch */
+ int *num_fixed = NULL;
+ if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
+ num_fixed = &res->leaks_fixed;
+ } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
+ num_fixed = &res->corruptions_fixed;
+ }
+
+ fprintf(stderr, "%s cluster %" PRId64 " refcount=%d reference=%d\n",
+ num_fixed != NULL ? "Repairing" :
+ refcount1 < refcount2 ? "ERROR" :
+ "Leaked",
+ i, refcount1, refcount2);
+
+ if (num_fixed) {
+ ret = update_refcount(bs, i << s->cluster_bits, 1,
+ refcount2 - refcount1,
+ QCOW2_DISCARD_ALWAYS);
+ if (ret >= 0) {
+ (*num_fixed)++;
+ continue;
+ }
+ }
+
+ /* And if we couldn't, print an error */
+ if (refcount1 < refcount2) {
+ res->corruptions++;
+ } else {
+ res->leaks++;
+ }
+ }
+ }
+
+ res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
+ ret = 0;
+
+fail:
+ g_free(refcount_table);
+
+ return ret;
+}
+
diff --git a/contrib/qemu/block/qcow2-snapshot.c b/contrib/qemu/block/qcow2-snapshot.c
new file mode 100644
index 00000000000..0caac9055f8
--- /dev/null
+++ b/contrib/qemu/block/qcow2-snapshot.c
@@ -0,0 +1,660 @@
+/*
+ * Block driver for the QCOW version 2 format
+ *
+ * Copyright (c) 2004-2006 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu-common.h"
+#include "block/block_int.h"
+#include "block/qcow2.h"
+
+typedef struct QEMU_PACKED QCowSnapshotHeader {
+ /* header is 8 byte aligned */
+ uint64_t l1_table_offset;
+
+ uint32_t l1_size;
+ uint16_t id_str_size;
+ uint16_t name_size;
+
+ uint32_t date_sec;
+ uint32_t date_nsec;
+
+ uint64_t vm_clock_nsec;
+
+ uint32_t vm_state_size;
+ uint32_t extra_data_size; /* for extension */
+ /* extra data follows */
+ /* id_str follows */
+ /* name follows */
+} QCowSnapshotHeader;
+
+typedef struct QEMU_PACKED QCowSnapshotExtraData {
+ uint64_t vm_state_size_large;
+ uint64_t disk_size;
+} QCowSnapshotExtraData;
+
+void qcow2_free_snapshots(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ int i;
+
+ for(i = 0; i < s->nb_snapshots; i++) {
+ g_free(s->snapshots[i].name);
+ g_free(s->snapshots[i].id_str);
+ }
+ g_free(s->snapshots);
+ s->snapshots = NULL;
+ s->nb_snapshots = 0;
+}
+
+int qcow2_read_snapshots(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ QCowSnapshotHeader h;
+ QCowSnapshotExtraData extra;
+ QCowSnapshot *sn;
+ int i, id_str_size, name_size;
+ int64_t offset;
+ uint32_t extra_data_size;
+ int ret;
+
+ if (!s->nb_snapshots) {
+ s->snapshots = NULL;
+ s->snapshots_size = 0;
+ return 0;
+ }
+
+ offset = s->snapshots_offset;
+ s->snapshots = g_malloc0(s->nb_snapshots * sizeof(QCowSnapshot));
+
+ for(i = 0; i < s->nb_snapshots; i++) {
+ /* Read statically sized part of the snapshot header */
+ offset = align_offset(offset, 8);
+ ret = bdrv_pread(bs->file, offset, &h, sizeof(h));
+ if (ret < 0) {
+ goto fail;
+ }
+
+ offset += sizeof(h);
+ sn = s->snapshots + i;
+ sn->l1_table_offset = be64_to_cpu(h.l1_table_offset);
+ sn->l1_size = be32_to_cpu(h.l1_size);
+ sn->vm_state_size = be32_to_cpu(h.vm_state_size);
+ sn->date_sec = be32_to_cpu(h.date_sec);
+ sn->date_nsec = be32_to_cpu(h.date_nsec);
+ sn->vm_clock_nsec = be64_to_cpu(h.vm_clock_nsec);
+ extra_data_size = be32_to_cpu(h.extra_data_size);
+
+ id_str_size = be16_to_cpu(h.id_str_size);
+ name_size = be16_to_cpu(h.name_size);
+
+ /* Read extra data */
+ ret = bdrv_pread(bs->file, offset, &extra,
+ MIN(sizeof(extra), extra_data_size));
+ if (ret < 0) {
+ goto fail;
+ }
+ offset += extra_data_size;
+
+ if (extra_data_size >= 8) {
+ sn->vm_state_size = be64_to_cpu(extra.vm_state_size_large);
+ }
+
+ if (extra_data_size >= 16) {
+ sn->disk_size = be64_to_cpu(extra.disk_size);
+ } else {
+ sn->disk_size = bs->total_sectors * BDRV_SECTOR_SIZE;
+ }
+
+ /* Read snapshot ID */
+ sn->id_str = g_malloc(id_str_size + 1);
+ ret = bdrv_pread(bs->file, offset, sn->id_str, id_str_size);
+ if (ret < 0) {
+ goto fail;
+ }
+ offset += id_str_size;
+ sn->id_str[id_str_size] = '\0';
+
+ /* Read snapshot name */
+ sn->name = g_malloc(name_size + 1);
+ ret = bdrv_pread(bs->file, offset, sn->name, name_size);
+ if (ret < 0) {
+ goto fail;
+ }
+ offset += name_size;
+ sn->name[name_size] = '\0';
+ }
+
+ s->snapshots_size = offset - s->snapshots_offset;
+ return 0;
+
+fail:
+ qcow2_free_snapshots(bs);
+ return ret;
+}
+
+/* add at the end of the file a new list of snapshots */
+static int qcow2_write_snapshots(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ QCowSnapshot *sn;
+ QCowSnapshotHeader h;
+ QCowSnapshotExtraData extra;
+ int i, name_size, id_str_size, snapshots_size;
+ struct {
+ uint32_t nb_snapshots;
+ uint64_t snapshots_offset;
+ } QEMU_PACKED header_data;
+ int64_t offset, snapshots_offset;
+ int ret;
+
+ /* compute the size of the snapshots */
+ offset = 0;
+ for(i = 0; i < s->nb_snapshots; i++) {
+ sn = s->snapshots + i;
+ offset = align_offset(offset, 8);
+ offset += sizeof(h);
+ offset += sizeof(extra);
+ offset += strlen(sn->id_str);
+ offset += strlen(sn->name);
+ }
+ snapshots_size = offset;
+
+ /* Allocate space for the new snapshot list */
+ snapshots_offset = qcow2_alloc_clusters(bs, snapshots_size);
+ offset = snapshots_offset;
+ if (offset < 0) {
+ return offset;
+ }
+ ret = bdrv_flush(bs);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* Write all snapshots to the new list */
+ for(i = 0; i < s->nb_snapshots; i++) {
+ sn = s->snapshots + i;
+ memset(&h, 0, sizeof(h));
+ h.l1_table_offset = cpu_to_be64(sn->l1_table_offset);
+ h.l1_size = cpu_to_be32(sn->l1_size);
+ /* If it doesn't fit in 32 bit, older implementations should treat it
+ * as a disk-only snapshot rather than truncate the VM state */
+ if (sn->vm_state_size <= 0xffffffff) {
+ h.vm_state_size = cpu_to_be32(sn->vm_state_size);
+ }
+ h.date_sec = cpu_to_be32(sn->date_sec);
+ h.date_nsec = cpu_to_be32(sn->date_nsec);
+ h.vm_clock_nsec = cpu_to_be64(sn->vm_clock_nsec);
+ h.extra_data_size = cpu_to_be32(sizeof(extra));
+
+ memset(&extra, 0, sizeof(extra));
+ extra.vm_state_size_large = cpu_to_be64(sn->vm_state_size);
+ extra.disk_size = cpu_to_be64(sn->disk_size);
+
+ id_str_size = strlen(sn->id_str);
+ name_size = strlen(sn->name);
+ h.id_str_size = cpu_to_be16(id_str_size);
+ h.name_size = cpu_to_be16(name_size);
+ offset = align_offset(offset, 8);
+
+ ret = bdrv_pwrite(bs->file, offset, &h, sizeof(h));
+ if (ret < 0) {
+ goto fail;
+ }
+ offset += sizeof(h);
+
+ ret = bdrv_pwrite(bs->file, offset, &extra, sizeof(extra));
+ if (ret < 0) {
+ goto fail;
+ }
+ offset += sizeof(extra);
+
+ ret = bdrv_pwrite(bs->file, offset, sn->id_str, id_str_size);
+ if (ret < 0) {
+ goto fail;
+ }
+ offset += id_str_size;
+
+ ret = bdrv_pwrite(bs->file, offset, sn->name, name_size);
+ if (ret < 0) {
+ goto fail;
+ }
+ offset += name_size;
+ }
+
+ /*
+ * Update the header to point to the new snapshot table. This requires the
+ * new table and its refcounts to be stable on disk.
+ */
+ ret = bdrv_flush(bs);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ QEMU_BUILD_BUG_ON(offsetof(QCowHeader, snapshots_offset) !=
+ offsetof(QCowHeader, nb_snapshots) + sizeof(header_data.nb_snapshots));
+
+ header_data.nb_snapshots = cpu_to_be32(s->nb_snapshots);
+ header_data.snapshots_offset = cpu_to_be64(snapshots_offset);
+
+ ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, nb_snapshots),
+ &header_data, sizeof(header_data));
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /* free the old snapshot table */
+ qcow2_free_clusters(bs, s->snapshots_offset, s->snapshots_size,
+ QCOW2_DISCARD_SNAPSHOT);
+ s->snapshots_offset = snapshots_offset;
+ s->snapshots_size = snapshots_size;
+ return 0;
+
+fail:
+ return ret;
+}
+
+static void find_new_snapshot_id(BlockDriverState *bs,
+ char *id_str, int id_str_size)
+{
+ BDRVQcowState *s = bs->opaque;
+ QCowSnapshot *sn;
+ int i, id, id_max = 0;
+
+ for(i = 0; i < s->nb_snapshots; i++) {
+ sn = s->snapshots + i;
+ id = strtoul(sn->id_str, NULL, 10);
+ if (id > id_max)
+ id_max = id;
+ }
+ snprintf(id_str, id_str_size, "%d", id_max + 1);
+}
+
+static int find_snapshot_by_id(BlockDriverState *bs, const char *id_str)
+{
+ BDRVQcowState *s = bs->opaque;
+ int i;
+
+ for(i = 0; i < s->nb_snapshots; i++) {
+ if (!strcmp(s->snapshots[i].id_str, id_str))
+ return i;
+ }
+ return -1;
+}
+
+static int find_snapshot_by_id_or_name(BlockDriverState *bs, const char *name)
+{
+ BDRVQcowState *s = bs->opaque;
+ int i, ret;
+
+ ret = find_snapshot_by_id(bs, name);
+ if (ret >= 0)
+ return ret;
+ for(i = 0; i < s->nb_snapshots; i++) {
+ if (!strcmp(s->snapshots[i].name, name))
+ return i;
+ }
+ return -1;
+}
+
+/* if no id is provided, a new one is constructed */
+int qcow2_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info)
+{
+ BDRVQcowState *s = bs->opaque;
+ QCowSnapshot *new_snapshot_list = NULL;
+ QCowSnapshot *old_snapshot_list = NULL;
+ QCowSnapshot sn1, *sn = &sn1;
+ int i, ret;
+ uint64_t *l1_table = NULL;
+ int64_t l1_table_offset;
+
+ memset(sn, 0, sizeof(*sn));
+
+ /* Generate an ID if it wasn't passed */
+ if (sn_info->id_str[0] == '\0') {
+ find_new_snapshot_id(bs, sn_info->id_str, sizeof(sn_info->id_str));
+ }
+
+ /* Check that the ID is unique */
+ if (find_snapshot_by_id(bs, sn_info->id_str) >= 0) {
+ return -EEXIST;
+ }
+
+ /* Populate sn with passed data */
+ sn->id_str = g_strdup(sn_info->id_str);
+ sn->name = g_strdup(sn_info->name);
+
+ sn->disk_size = bs->total_sectors * BDRV_SECTOR_SIZE;
+ sn->vm_state_size = sn_info->vm_state_size;
+ sn->date_sec = sn_info->date_sec;
+ sn->date_nsec = sn_info->date_nsec;
+ sn->vm_clock_nsec = sn_info->vm_clock_nsec;
+
+ /* Allocate the L1 table of the snapshot and copy the current one there. */
+ l1_table_offset = qcow2_alloc_clusters(bs, s->l1_size * sizeof(uint64_t));
+ if (l1_table_offset < 0) {
+ ret = l1_table_offset;
+ goto fail;
+ }
+
+ sn->l1_table_offset = l1_table_offset;
+ sn->l1_size = s->l1_size;
+
+ l1_table = g_malloc(s->l1_size * sizeof(uint64_t));
+ for(i = 0; i < s->l1_size; i++) {
+ l1_table[i] = cpu_to_be64(s->l1_table[i]);
+ }
+
+ ret = bdrv_pwrite(bs->file, sn->l1_table_offset, l1_table,
+ s->l1_size * sizeof(uint64_t));
+ if (ret < 0) {
+ goto fail;
+ }
+
+ g_free(l1_table);
+ l1_table = NULL;
+
+ /*
+ * Increase the refcounts of all clusters and make sure everything is
+ * stable on disk before updating the snapshot table to contain a pointer
+ * to the new L1 table.
+ */
+ ret = qcow2_update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 1);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /* Append the new snapshot to the snapshot list */
+ new_snapshot_list = g_malloc((s->nb_snapshots + 1) * sizeof(QCowSnapshot));
+ if (s->snapshots) {
+ memcpy(new_snapshot_list, s->snapshots,
+ s->nb_snapshots * sizeof(QCowSnapshot));
+ old_snapshot_list = s->snapshots;
+ }
+ s->snapshots = new_snapshot_list;
+ s->snapshots[s->nb_snapshots++] = *sn;
+
+ ret = qcow2_write_snapshots(bs);
+ if (ret < 0) {
+ g_free(s->snapshots);
+ s->snapshots = old_snapshot_list;
+ goto fail;
+ }
+
+ g_free(old_snapshot_list);
+
+#ifdef DEBUG_ALLOC
+ {
+ BdrvCheckResult result = {0};
+ qcow2_check_refcounts(bs, &result, 0);
+ }
+#endif
+ return 0;
+
+fail:
+ g_free(sn->id_str);
+ g_free(sn->name);
+ g_free(l1_table);
+
+ return ret;
+}
+
+/* copy the snapshot 'snapshot_name' into the current disk image */
+int qcow2_snapshot_goto(BlockDriverState *bs, const char *snapshot_id)
+{
+ BDRVQcowState *s = bs->opaque;
+ QCowSnapshot *sn;
+ int i, snapshot_index;
+ int cur_l1_bytes, sn_l1_bytes;
+ int ret;
+ uint64_t *sn_l1_table = NULL;
+
+ /* Search the snapshot */
+ snapshot_index = find_snapshot_by_id_or_name(bs, snapshot_id);
+ if (snapshot_index < 0) {
+ return -ENOENT;
+ }
+ sn = &s->snapshots[snapshot_index];
+
+ if (sn->disk_size != bs->total_sectors * BDRV_SECTOR_SIZE) {
+ error_report("qcow2: Loading snapshots with different disk "
+ "size is not implemented");
+ ret = -ENOTSUP;
+ goto fail;
+ }
+
+ /*
+ * Make sure that the current L1 table is big enough to contain the whole
+ * L1 table of the snapshot. If the snapshot L1 table is smaller, the
+ * current one must be padded with zeros.
+ */
+ ret = qcow2_grow_l1_table(bs, sn->l1_size, true);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ cur_l1_bytes = s->l1_size * sizeof(uint64_t);
+ sn_l1_bytes = sn->l1_size * sizeof(uint64_t);
+
+ /*
+ * Copy the snapshot L1 table to the current L1 table.
+ *
+ * Before overwriting the old current L1 table on disk, make sure to
+ * increase all refcounts for the clusters referenced by the new one.
+ * Decrease the refcount referenced by the old one only when the L1
+ * table is overwritten.
+ */
+ sn_l1_table = g_malloc0(cur_l1_bytes);
+
+ ret = bdrv_pread(bs->file, sn->l1_table_offset, sn_l1_table, sn_l1_bytes);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ ret = qcow2_update_snapshot_refcount(bs, sn->l1_table_offset,
+ sn->l1_size, 1);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset, sn_l1_table,
+ cur_l1_bytes);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /*
+ * Decrease refcount of clusters of current L1 table.
+ *
+ * At this point, the in-memory s->l1_table points to the old L1 table,
+ * whereas on disk we already have the new one.
+ *
+ * qcow2_update_snapshot_refcount special cases the current L1 table to use
+ * the in-memory data instead of really using the offset to load a new one,
+ * which is why this works.
+ */
+ ret = qcow2_update_snapshot_refcount(bs, s->l1_table_offset,
+ s->l1_size, -1);
+
+ /*
+ * Now update the in-memory L1 table to be in sync with the on-disk one. We
+ * need to do this even if updating refcounts failed.
+ */
+ for(i = 0;i < s->l1_size; i++) {
+ s->l1_table[i] = be64_to_cpu(sn_l1_table[i]);
+ }
+
+ if (ret < 0) {
+ goto fail;
+ }
+
+ g_free(sn_l1_table);
+ sn_l1_table = NULL;
+
+ /*
+ * Update QCOW_OFLAG_COPIED in the active L1 table (it may have changed
+ * when we decreased the refcount of the old snapshot.
+ */
+ ret = qcow2_update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 0);
+ if (ret < 0) {
+ goto fail;
+ }
+
+#ifdef DEBUG_ALLOC
+ {
+ BdrvCheckResult result = {0};
+ qcow2_check_refcounts(bs, &result, 0);
+ }
+#endif
+ return 0;
+
+fail:
+ g_free(sn_l1_table);
+ return ret;
+}
+
+int qcow2_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
+{
+ BDRVQcowState *s = bs->opaque;
+ QCowSnapshot sn;
+ int snapshot_index, ret;
+
+ /* Search the snapshot */
+ snapshot_index = find_snapshot_by_id_or_name(bs, snapshot_id);
+ if (snapshot_index < 0) {
+ return -ENOENT;
+ }
+ sn = s->snapshots[snapshot_index];
+
+ /* Remove it from the snapshot list */
+ memmove(s->snapshots + snapshot_index,
+ s->snapshots + snapshot_index + 1,
+ (s->nb_snapshots - snapshot_index - 1) * sizeof(sn));
+ s->nb_snapshots--;
+ ret = qcow2_write_snapshots(bs);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /*
+ * The snapshot is now unused, clean up. If we fail after this point, we
+ * won't recover but just leak clusters.
+ */
+ g_free(sn.id_str);
+ g_free(sn.name);
+
+ /*
+ * Now decrease the refcounts of clusters referenced by the snapshot and
+ * free the L1 table.
+ */
+ ret = qcow2_update_snapshot_refcount(bs, sn.l1_table_offset,
+ sn.l1_size, -1);
+ if (ret < 0) {
+ return ret;
+ }
+ qcow2_free_clusters(bs, sn.l1_table_offset, sn.l1_size * sizeof(uint64_t),
+ QCOW2_DISCARD_SNAPSHOT);
+
+ /* must update the copied flag on the current cluster offsets */
+ ret = qcow2_update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 0);
+ if (ret < 0) {
+ return ret;
+ }
+
+#ifdef DEBUG_ALLOC
+ {
+ BdrvCheckResult result = {0};
+ qcow2_check_refcounts(bs, &result, 0);
+ }
+#endif
+ return 0;
+}
+
+int qcow2_snapshot_list(BlockDriverState *bs, QEMUSnapshotInfo **psn_tab)
+{
+ BDRVQcowState *s = bs->opaque;
+ QEMUSnapshotInfo *sn_tab, *sn_info;
+ QCowSnapshot *sn;
+ int i;
+
+ if (!s->nb_snapshots) {
+ *psn_tab = NULL;
+ return s->nb_snapshots;
+ }
+
+ sn_tab = g_malloc0(s->nb_snapshots * sizeof(QEMUSnapshotInfo));
+ for(i = 0; i < s->nb_snapshots; i++) {
+ sn_info = sn_tab + i;
+ sn = s->snapshots + i;
+ pstrcpy(sn_info->id_str, sizeof(sn_info->id_str),
+ sn->id_str);
+ pstrcpy(sn_info->name, sizeof(sn_info->name),
+ sn->name);
+ sn_info->vm_state_size = sn->vm_state_size;
+ sn_info->date_sec = sn->date_sec;
+ sn_info->date_nsec = sn->date_nsec;
+ sn_info->vm_clock_nsec = sn->vm_clock_nsec;
+ }
+ *psn_tab = sn_tab;
+ return s->nb_snapshots;
+}
+
+int qcow2_snapshot_load_tmp(BlockDriverState *bs, const char *snapshot_name)
+{
+ int i, snapshot_index;
+ BDRVQcowState *s = bs->opaque;
+ QCowSnapshot *sn;
+ uint64_t *new_l1_table;
+ int new_l1_bytes;
+ int ret;
+
+ assert(bs->read_only);
+
+ /* Search the snapshot */
+ snapshot_index = find_snapshot_by_id_or_name(bs, snapshot_name);
+ if (snapshot_index < 0) {
+ return -ENOENT;
+ }
+ sn = &s->snapshots[snapshot_index];
+
+ /* Allocate and read in the snapshot's L1 table */
+ new_l1_bytes = s->l1_size * sizeof(uint64_t);
+ new_l1_table = g_malloc0(align_offset(new_l1_bytes, 512));
+
+ ret = bdrv_pread(bs->file, sn->l1_table_offset, new_l1_table, new_l1_bytes);
+ if (ret < 0) {
+ g_free(new_l1_table);
+ return ret;
+ }
+
+ /* Switch the L1 table */
+ g_free(s->l1_table);
+
+ s->l1_size = sn->l1_size;
+ s->l1_table_offset = sn->l1_table_offset;
+ s->l1_table = new_l1_table;
+
+ for(i = 0;i < s->l1_size; i++) {
+ be64_to_cpus(&s->l1_table[i]);
+ }
+
+ return 0;
+}
diff --git a/contrib/qemu/block/qcow2.c b/contrib/qemu/block/qcow2.c
new file mode 100644
index 00000000000..0eceefe2cd9
--- /dev/null
+++ b/contrib/qemu/block/qcow2.c
@@ -0,0 +1,1825 @@
+/*
+ * Block driver for the QCOW version 2 format
+ *
+ * Copyright (c) 2004-2006 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#include "qemu-common.h"
+#include "block/block_int.h"
+#include "qemu/module.h"
+#include <zlib.h>
+#include "qemu/aes.h"
+#include "block/qcow2.h"
+#include "qemu/error-report.h"
+#include "qapi/qmp/qerror.h"
+#include "qapi/qmp/qbool.h"
+#include "trace.h"
+
+/*
+ Differences with QCOW:
+
+ - Support for multiple incremental snapshots.
+ - Memory management by reference counts.
+ - Clusters which have a reference count of one have the bit
+ QCOW_OFLAG_COPIED to optimize write performance.
+ - Size of compressed clusters is stored in sectors to reduce bit usage
+ in the cluster offsets.
+ - Support for storing additional data (such as the VM state) in the
+ snapshots.
+ - If a backing store is used, the cluster size is not constrained
+ (could be backported to QCOW).
+ - L2 tables have always a size of one cluster.
+*/
+
+
+typedef struct {
+ uint32_t magic;
+ uint32_t len;
+} QCowExtension;
+
+#define QCOW2_EXT_MAGIC_END 0
+#define QCOW2_EXT_MAGIC_BACKING_FORMAT 0xE2792ACA
+#define QCOW2_EXT_MAGIC_FEATURE_TABLE 0x6803f857
+
+static int qcow2_probe(const uint8_t *buf, int buf_size, const char *filename)
+{
+ const QCowHeader *cow_header = (const void *)buf;
+
+ if (buf_size >= sizeof(QCowHeader) &&
+ be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
+ be32_to_cpu(cow_header->version) >= 2)
+ return 100;
+ else
+ return 0;
+}
+
+
+/*
+ * read qcow2 extension and fill bs
+ * start reading from start_offset
+ * finish reading upon magic of value 0 or when end_offset reached
+ * unknown magic is skipped (future extension this version knows nothing about)
+ * return 0 upon success, non-0 otherwise
+ */
+static int qcow2_read_extensions(BlockDriverState *bs, uint64_t start_offset,
+ uint64_t end_offset, void **p_feature_table)
+{
+ BDRVQcowState *s = bs->opaque;
+ QCowExtension ext;
+ uint64_t offset;
+ int ret;
+
+#ifdef DEBUG_EXT
+ printf("qcow2_read_extensions: start=%ld end=%ld\n", start_offset, end_offset);
+#endif
+ offset = start_offset;
+ while (offset < end_offset) {
+
+#ifdef DEBUG_EXT
+ /* Sanity check */
+ if (offset > s->cluster_size)
+ printf("qcow2_read_extension: suspicious offset %lu\n", offset);
+
+ printf("attempting to read extended header in offset %lu\n", offset);
+#endif
+
+ if (bdrv_pread(bs->file, offset, &ext, sizeof(ext)) != sizeof(ext)) {
+ fprintf(stderr, "qcow2_read_extension: ERROR: "
+ "pread fail from offset %" PRIu64 "\n",
+ offset);
+ return 1;
+ }
+ be32_to_cpus(&ext.magic);
+ be32_to_cpus(&ext.len);
+ offset += sizeof(ext);
+#ifdef DEBUG_EXT
+ printf("ext.magic = 0x%x\n", ext.magic);
+#endif
+ if (ext.len > end_offset - offset) {
+ error_report("Header extension too large");
+ return -EINVAL;
+ }
+
+ switch (ext.magic) {
+ case QCOW2_EXT_MAGIC_END:
+ return 0;
+
+ case QCOW2_EXT_MAGIC_BACKING_FORMAT:
+ if (ext.len >= sizeof(bs->backing_format)) {
+ fprintf(stderr, "ERROR: ext_backing_format: len=%u too large"
+ " (>=%zu)\n",
+ ext.len, sizeof(bs->backing_format));
+ return 2;
+ }
+ if (bdrv_pread(bs->file, offset , bs->backing_format,
+ ext.len) != ext.len)
+ return 3;
+ bs->backing_format[ext.len] = '\0';
+#ifdef DEBUG_EXT
+ printf("Qcow2: Got format extension %s\n", bs->backing_format);
+#endif
+ break;
+
+ case QCOW2_EXT_MAGIC_FEATURE_TABLE:
+ if (p_feature_table != NULL) {
+ void* feature_table = g_malloc0(ext.len + 2 * sizeof(Qcow2Feature));
+ ret = bdrv_pread(bs->file, offset , feature_table, ext.len);
+ if (ret < 0) {
+ return ret;
+ }
+
+ *p_feature_table = feature_table;
+ }
+ break;
+
+ default:
+ /* unknown magic - save it in case we need to rewrite the header */
+ {
+ Qcow2UnknownHeaderExtension *uext;
+
+ uext = g_malloc0(sizeof(*uext) + ext.len);
+ uext->magic = ext.magic;
+ uext->len = ext.len;
+ QLIST_INSERT_HEAD(&s->unknown_header_ext, uext, next);
+
+ ret = bdrv_pread(bs->file, offset , uext->data, uext->len);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+ break;
+ }
+
+ offset += ((ext.len + 7) & ~7);
+ }
+
+ return 0;
+}
+
+static void cleanup_unknown_header_ext(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ Qcow2UnknownHeaderExtension *uext, *next;
+
+ QLIST_FOREACH_SAFE(uext, &s->unknown_header_ext, next, next) {
+ QLIST_REMOVE(uext, next);
+ g_free(uext);
+ }
+}
+
+static void GCC_FMT_ATTR(2, 3) report_unsupported(BlockDriverState *bs,
+ const char *fmt, ...)
+{
+ char msg[64];
+ va_list ap;
+
+ va_start(ap, fmt);
+ vsnprintf(msg, sizeof(msg), fmt, ap);
+ va_end(ap);
+
+ qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
+ bs->device_name, "qcow2", msg);
+}
+
+static void report_unsupported_feature(BlockDriverState *bs,
+ Qcow2Feature *table, uint64_t mask)
+{
+ while (table && table->name[0] != '\0') {
+ if (table->type == QCOW2_FEAT_TYPE_INCOMPATIBLE) {
+ if (mask & (1 << table->bit)) {
+ report_unsupported(bs, "%.46s",table->name);
+ mask &= ~(1 << table->bit);
+ }
+ }
+ table++;
+ }
+
+ if (mask) {
+ report_unsupported(bs, "Unknown incompatible feature: %" PRIx64, mask);
+ }
+}
+
+/*
+ * Sets the dirty bit and flushes afterwards if necessary.
+ *
+ * The incompatible_features bit is only set if the image file header was
+ * updated successfully. Therefore it is not required to check the return
+ * value of this function.
+ */
+int qcow2_mark_dirty(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t val;
+ int ret;
+
+ assert(s->qcow_version >= 3);
+
+ if (s->incompatible_features & QCOW2_INCOMPAT_DIRTY) {
+ return 0; /* already dirty */
+ }
+
+ val = cpu_to_be64(s->incompatible_features | QCOW2_INCOMPAT_DIRTY);
+ ret = bdrv_pwrite(bs->file, offsetof(QCowHeader, incompatible_features),
+ &val, sizeof(val));
+ if (ret < 0) {
+ return ret;
+ }
+ ret = bdrv_flush(bs->file);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* Only treat image as dirty if the header was updated successfully */
+ s->incompatible_features |= QCOW2_INCOMPAT_DIRTY;
+ return 0;
+}
+
+/*
+ * Clears the dirty bit and flushes before if necessary. Only call this
+ * function when there are no pending requests, it does not guard against
+ * concurrent requests dirtying the image.
+ */
+static int qcow2_mark_clean(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+
+ if (s->incompatible_features & QCOW2_INCOMPAT_DIRTY) {
+ int ret = bdrv_flush(bs);
+ if (ret < 0) {
+ return ret;
+ }
+
+ s->incompatible_features &= ~QCOW2_INCOMPAT_DIRTY;
+ return qcow2_update_header(bs);
+ }
+ return 0;
+}
+
+static int qcow2_check(BlockDriverState *bs, BdrvCheckResult *result,
+ BdrvCheckMode fix)
+{
+ int ret = qcow2_check_refcounts(bs, result, fix);
+ if (ret < 0) {
+ return ret;
+ }
+
+ if (fix && result->check_errors == 0 && result->corruptions == 0) {
+ return qcow2_mark_clean(bs);
+ }
+ return ret;
+}
+
+static QemuOptsList qcow2_runtime_opts = {
+ .name = "qcow2",
+ .head = QTAILQ_HEAD_INITIALIZER(qcow2_runtime_opts.head),
+ .desc = {
+ {
+ .name = "lazy_refcounts",
+ .type = QEMU_OPT_BOOL,
+ .help = "Postpone refcount updates",
+ },
+ {
+ .name = QCOW2_OPT_DISCARD_REQUEST,
+ .type = QEMU_OPT_BOOL,
+ .help = "Pass guest discard requests to the layer below",
+ },
+ {
+ .name = QCOW2_OPT_DISCARD_SNAPSHOT,
+ .type = QEMU_OPT_BOOL,
+ .help = "Generate discard requests when snapshot related space "
+ "is freed",
+ },
+ {
+ .name = QCOW2_OPT_DISCARD_OTHER,
+ .type = QEMU_OPT_BOOL,
+ .help = "Generate discard requests when other clusters are freed",
+ },
+ { /* end of list */ }
+ },
+};
+
+static int qcow2_open(BlockDriverState *bs, QDict *options, int flags)
+{
+ BDRVQcowState *s = bs->opaque;
+ int len, i, ret = 0;
+ QCowHeader header;
+ QemuOpts *opts;
+ Error *local_err = NULL;
+ uint64_t ext_end;
+ uint64_t l1_vm_state_index;
+
+ ret = bdrv_pread(bs->file, 0, &header, sizeof(header));
+ if (ret < 0) {
+ goto fail;
+ }
+ be32_to_cpus(&header.magic);
+ be32_to_cpus(&header.version);
+ be64_to_cpus(&header.backing_file_offset);
+ be32_to_cpus(&header.backing_file_size);
+ be64_to_cpus(&header.size);
+ be32_to_cpus(&header.cluster_bits);
+ be32_to_cpus(&header.crypt_method);
+ be64_to_cpus(&header.l1_table_offset);
+ be32_to_cpus(&header.l1_size);
+ be64_to_cpus(&header.refcount_table_offset);
+ be32_to_cpus(&header.refcount_table_clusters);
+ be64_to_cpus(&header.snapshots_offset);
+ be32_to_cpus(&header.nb_snapshots);
+
+ if (header.magic != QCOW_MAGIC) {
+ ret = -EMEDIUMTYPE;
+ goto fail;
+ }
+ if (header.version < 2 || header.version > 3) {
+ report_unsupported(bs, "QCOW version %d", header.version);
+ ret = -ENOTSUP;
+ goto fail;
+ }
+
+ s->qcow_version = header.version;
+
+ /* Initialise version 3 header fields */
+ if (header.version == 2) {
+ header.incompatible_features = 0;
+ header.compatible_features = 0;
+ header.autoclear_features = 0;
+ header.refcount_order = 4;
+ header.header_length = 72;
+ } else {
+ be64_to_cpus(&header.incompatible_features);
+ be64_to_cpus(&header.compatible_features);
+ be64_to_cpus(&header.autoclear_features);
+ be32_to_cpus(&header.refcount_order);
+ be32_to_cpus(&header.header_length);
+ }
+
+ if (header.header_length > sizeof(header)) {
+ s->unknown_header_fields_size = header.header_length - sizeof(header);
+ s->unknown_header_fields = g_malloc(s->unknown_header_fields_size);
+ ret = bdrv_pread(bs->file, sizeof(header), s->unknown_header_fields,
+ s->unknown_header_fields_size);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+
+ if (header.backing_file_offset) {
+ ext_end = header.backing_file_offset;
+ } else {
+ ext_end = 1 << header.cluster_bits;
+ }
+
+ /* Handle feature bits */
+ s->incompatible_features = header.incompatible_features;
+ s->compatible_features = header.compatible_features;
+ s->autoclear_features = header.autoclear_features;
+
+ if (s->incompatible_features & ~QCOW2_INCOMPAT_MASK) {
+ void *feature_table = NULL;
+ qcow2_read_extensions(bs, header.header_length, ext_end,
+ &feature_table);
+ report_unsupported_feature(bs, feature_table,
+ s->incompatible_features &
+ ~QCOW2_INCOMPAT_MASK);
+ ret = -ENOTSUP;
+ goto fail;
+ }
+
+ /* Check support for various header values */
+ if (header.refcount_order != 4) {
+ report_unsupported(bs, "%d bit reference counts",
+ 1 << header.refcount_order);
+ ret = -ENOTSUP;
+ goto fail;
+ }
+
+ if (header.cluster_bits < MIN_CLUSTER_BITS ||
+ header.cluster_bits > MAX_CLUSTER_BITS) {
+ ret = -EINVAL;
+ goto fail;
+ }
+ if (header.crypt_method > QCOW_CRYPT_AES) {
+ ret = -EINVAL;
+ goto fail;
+ }
+ s->crypt_method_header = header.crypt_method;
+ if (s->crypt_method_header) {
+ bs->encrypted = 1;
+ }
+ s->cluster_bits = header.cluster_bits;
+ s->cluster_size = 1 << s->cluster_bits;
+ s->cluster_sectors = 1 << (s->cluster_bits - 9);
+ s->l2_bits = s->cluster_bits - 3; /* L2 is always one cluster */
+ s->l2_size = 1 << s->l2_bits;
+ bs->total_sectors = header.size / 512;
+ s->csize_shift = (62 - (s->cluster_bits - 8));
+ s->csize_mask = (1 << (s->cluster_bits - 8)) - 1;
+ s->cluster_offset_mask = (1LL << s->csize_shift) - 1;
+ s->refcount_table_offset = header.refcount_table_offset;
+ s->refcount_table_size =
+ header.refcount_table_clusters << (s->cluster_bits - 3);
+
+ s->snapshots_offset = header.snapshots_offset;
+ s->nb_snapshots = header.nb_snapshots;
+
+ /* read the level 1 table */
+ s->l1_size = header.l1_size;
+
+ l1_vm_state_index = size_to_l1(s, header.size);
+ if (l1_vm_state_index > INT_MAX) {
+ ret = -EFBIG;
+ goto fail;
+ }
+ s->l1_vm_state_index = l1_vm_state_index;
+
+ /* the L1 table must contain at least enough entries to put
+ header.size bytes */
+ if (s->l1_size < s->l1_vm_state_index) {
+ ret = -EINVAL;
+ goto fail;
+ }
+ s->l1_table_offset = header.l1_table_offset;
+ if (s->l1_size > 0) {
+ s->l1_table = g_malloc0(
+ align_offset(s->l1_size * sizeof(uint64_t), 512));
+ ret = bdrv_pread(bs->file, s->l1_table_offset, s->l1_table,
+ s->l1_size * sizeof(uint64_t));
+ if (ret < 0) {
+ goto fail;
+ }
+ for(i = 0;i < s->l1_size; i++) {
+ be64_to_cpus(&s->l1_table[i]);
+ }
+ }
+
+ /* alloc L2 table/refcount block cache */
+ s->l2_table_cache = qcow2_cache_create(bs, L2_CACHE_SIZE);
+ s->refcount_block_cache = qcow2_cache_create(bs, REFCOUNT_CACHE_SIZE);
+
+ s->cluster_cache = g_malloc(s->cluster_size);
+ /* one more sector for decompressed data alignment */
+ s->cluster_data = qemu_blockalign(bs, QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size
+ + 512);
+ s->cluster_cache_offset = -1;
+ s->flags = flags;
+
+ ret = qcow2_refcount_init(bs);
+ if (ret != 0) {
+ goto fail;
+ }
+
+ QLIST_INIT(&s->cluster_allocs);
+ QTAILQ_INIT(&s->discards);
+
+ /* read qcow2 extensions */
+ if (qcow2_read_extensions(bs, header.header_length, ext_end, NULL)) {
+ ret = -EINVAL;
+ goto fail;
+ }
+
+ /* read the backing file name */
+ if (header.backing_file_offset != 0) {
+ len = header.backing_file_size;
+ if (len > 1023) {
+ len = 1023;
+ }
+ ret = bdrv_pread(bs->file, header.backing_file_offset,
+ bs->backing_file, len);
+ if (ret < 0) {
+ goto fail;
+ }
+ bs->backing_file[len] = '\0';
+ }
+
+ ret = qcow2_read_snapshots(bs);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /* Clear unknown autoclear feature bits */
+ if (!bs->read_only && s->autoclear_features != 0) {
+ s->autoclear_features = 0;
+ ret = qcow2_update_header(bs);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+
+ /* Initialise locks */
+ qemu_co_mutex_init(&s->lock);
+
+ /* Repair image if dirty */
+ if (!(flags & BDRV_O_CHECK) && !bs->read_only &&
+ (s->incompatible_features & QCOW2_INCOMPAT_DIRTY)) {
+ BdrvCheckResult result = {0};
+
+ ret = qcow2_check(bs, &result, BDRV_FIX_ERRORS);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+
+ /* Enable lazy_refcounts according to image and command line options */
+ opts = qemu_opts_create_nofail(&qcow2_runtime_opts);
+ qemu_opts_absorb_qdict(opts, options, &local_err);
+ if (error_is_set(&local_err)) {
+ qerror_report_err(local_err);
+ error_free(local_err);
+ ret = -EINVAL;
+ goto fail;
+ }
+
+ s->use_lazy_refcounts = qemu_opt_get_bool(opts, QCOW2_OPT_LAZY_REFCOUNTS,
+ (s->compatible_features & QCOW2_COMPAT_LAZY_REFCOUNTS));
+
+ s->discard_passthrough[QCOW2_DISCARD_NEVER] = false;
+ s->discard_passthrough[QCOW2_DISCARD_ALWAYS] = true;
+ s->discard_passthrough[QCOW2_DISCARD_REQUEST] =
+ qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_REQUEST,
+ flags & BDRV_O_UNMAP);
+ s->discard_passthrough[QCOW2_DISCARD_SNAPSHOT] =
+ qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_SNAPSHOT, true);
+ s->discard_passthrough[QCOW2_DISCARD_OTHER] =
+ qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_OTHER, false);
+
+ qemu_opts_del(opts);
+
+ if (s->use_lazy_refcounts && s->qcow_version < 3) {
+ qerror_report(ERROR_CLASS_GENERIC_ERROR, "Lazy refcounts require "
+ "a qcow2 image with at least qemu 1.1 compatibility level");
+ ret = -EINVAL;
+ goto fail;
+ }
+
+#ifdef DEBUG_ALLOC
+ {
+ BdrvCheckResult result = {0};
+ qcow2_check_refcounts(bs, &result, 0);
+ }
+#endif
+ return ret;
+
+ fail:
+ g_free(s->unknown_header_fields);
+ cleanup_unknown_header_ext(bs);
+ qcow2_free_snapshots(bs);
+ qcow2_refcount_close(bs);
+ g_free(s->l1_table);
+ if (s->l2_table_cache) {
+ qcow2_cache_destroy(bs, s->l2_table_cache);
+ }
+ g_free(s->cluster_cache);
+ qemu_vfree(s->cluster_data);
+ return ret;
+}
+
+static int qcow2_set_key(BlockDriverState *bs, const char *key)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint8_t keybuf[16];
+ int len, i;
+
+ memset(keybuf, 0, 16);
+ len = strlen(key);
+ if (len > 16)
+ len = 16;
+ /* XXX: we could compress the chars to 7 bits to increase
+ entropy */
+ for(i = 0;i < len;i++) {
+ keybuf[i] = key[i];
+ }
+ s->crypt_method = s->crypt_method_header;
+
+ if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0)
+ return -1;
+ if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0)
+ return -1;
+#if 0
+ /* test */
+ {
+ uint8_t in[16];
+ uint8_t out[16];
+ uint8_t tmp[16];
+ for(i=0;i<16;i++)
+ in[i] = i;
+ AES_encrypt(in, tmp, &s->aes_encrypt_key);
+ AES_decrypt(tmp, out, &s->aes_decrypt_key);
+ for(i = 0; i < 16; i++)
+ printf(" %02x", tmp[i]);
+ printf("\n");
+ for(i = 0; i < 16; i++)
+ printf(" %02x", out[i]);
+ printf("\n");
+ }
+#endif
+ return 0;
+}
+
+/* We have nothing to do for QCOW2 reopen, stubs just return
+ * success */
+static int qcow2_reopen_prepare(BDRVReopenState *state,
+ BlockReopenQueue *queue, Error **errp)
+{
+ return 0;
+}
+
+static int coroutine_fn qcow2_co_is_allocated(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, int *pnum)
+{
+ BDRVQcowState *s = bs->opaque;
+ uint64_t cluster_offset;
+ int ret;
+
+ *pnum = nb_sectors;
+ /* FIXME We can get errors here, but the bdrv_co_is_allocated interface
+ * can't pass them on today */
+ qemu_co_mutex_lock(&s->lock);
+ ret = qcow2_get_cluster_offset(bs, sector_num << 9, pnum, &cluster_offset);
+ qemu_co_mutex_unlock(&s->lock);
+ if (ret < 0) {
+ *pnum = 0;
+ }
+
+ return (cluster_offset != 0) || (ret == QCOW2_CLUSTER_ZERO);
+}
+
+/* handle reading after the end of the backing file */
+int qcow2_backing_read1(BlockDriverState *bs, QEMUIOVector *qiov,
+ int64_t sector_num, int nb_sectors)
+{
+ int n1;
+ if ((sector_num + nb_sectors) <= bs->total_sectors)
+ return nb_sectors;
+ if (sector_num >= bs->total_sectors)
+ n1 = 0;
+ else
+ n1 = bs->total_sectors - sector_num;
+
+ qemu_iovec_memset(qiov, 512 * n1, 0, 512 * (nb_sectors - n1));
+
+ return n1;
+}
+
+static coroutine_fn int qcow2_co_readv(BlockDriverState *bs, int64_t sector_num,
+ int remaining_sectors, QEMUIOVector *qiov)
+{
+ BDRVQcowState *s = bs->opaque;
+ int index_in_cluster, n1;
+ int ret;
+ int cur_nr_sectors; /* number of sectors in current iteration */
+ uint64_t cluster_offset = 0;
+ uint64_t bytes_done = 0;
+ QEMUIOVector hd_qiov;
+ uint8_t *cluster_data = NULL;
+
+ qemu_iovec_init(&hd_qiov, qiov->niov);
+
+ qemu_co_mutex_lock(&s->lock);
+
+ while (remaining_sectors != 0) {
+
+ /* prepare next request */
+ cur_nr_sectors = remaining_sectors;
+ if (s->crypt_method) {
+ cur_nr_sectors = MIN(cur_nr_sectors,
+ QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors);
+ }
+
+ ret = qcow2_get_cluster_offset(bs, sector_num << 9,
+ &cur_nr_sectors, &cluster_offset);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ index_in_cluster = sector_num & (s->cluster_sectors - 1);
+
+ qemu_iovec_reset(&hd_qiov);
+ qemu_iovec_concat(&hd_qiov, qiov, bytes_done,
+ cur_nr_sectors * 512);
+
+ switch (ret) {
+ case QCOW2_CLUSTER_UNALLOCATED:
+
+ if (bs->backing_hd) {
+ /* read from the base image */
+ n1 = qcow2_backing_read1(bs->backing_hd, &hd_qiov,
+ sector_num, cur_nr_sectors);
+ if (n1 > 0) {
+ BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING_AIO);
+ qemu_co_mutex_unlock(&s->lock);
+ ret = bdrv_co_readv(bs->backing_hd, sector_num,
+ n1, &hd_qiov);
+ qemu_co_mutex_lock(&s->lock);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+ } else {
+ /* Note: in this case, no need to wait */
+ qemu_iovec_memset(&hd_qiov, 0, 0, 512 * cur_nr_sectors);
+ }
+ break;
+
+ case QCOW2_CLUSTER_ZERO:
+ qemu_iovec_memset(&hd_qiov, 0, 0, 512 * cur_nr_sectors);
+ break;
+
+ case QCOW2_CLUSTER_COMPRESSED:
+ /* add AIO support for compressed blocks ? */
+ ret = qcow2_decompress_cluster(bs, cluster_offset);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ qemu_iovec_from_buf(&hd_qiov, 0,
+ s->cluster_cache + index_in_cluster * 512,
+ 512 * cur_nr_sectors);
+ break;
+
+ case QCOW2_CLUSTER_NORMAL:
+ if ((cluster_offset & 511) != 0) {
+ ret = -EIO;
+ goto fail;
+ }
+
+ if (s->crypt_method) {
+ /*
+ * For encrypted images, read everything into a temporary
+ * contiguous buffer on which the AES functions can work.
+ */
+ if (!cluster_data) {
+ cluster_data =
+ qemu_blockalign(bs, QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
+ }
+
+ assert(cur_nr_sectors <=
+ QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors);
+ qemu_iovec_reset(&hd_qiov);
+ qemu_iovec_add(&hd_qiov, cluster_data,
+ 512 * cur_nr_sectors);
+ }
+
+ BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
+ qemu_co_mutex_unlock(&s->lock);
+ ret = bdrv_co_readv(bs->file,
+ (cluster_offset >> 9) + index_in_cluster,
+ cur_nr_sectors, &hd_qiov);
+ qemu_co_mutex_lock(&s->lock);
+ if (ret < 0) {
+ goto fail;
+ }
+ if (s->crypt_method) {
+ qcow2_encrypt_sectors(s, sector_num, cluster_data,
+ cluster_data, cur_nr_sectors, 0, &s->aes_decrypt_key);
+ qemu_iovec_from_buf(qiov, bytes_done,
+ cluster_data, 512 * cur_nr_sectors);
+ }
+ break;
+
+ default:
+ g_assert_not_reached();
+ ret = -EIO;
+ goto fail;
+ }
+
+ remaining_sectors -= cur_nr_sectors;
+ sector_num += cur_nr_sectors;
+ bytes_done += cur_nr_sectors * 512;
+ }
+ ret = 0;
+
+fail:
+ qemu_co_mutex_unlock(&s->lock);
+
+ qemu_iovec_destroy(&hd_qiov);
+ qemu_vfree(cluster_data);
+
+ return ret;
+}
+
+static coroutine_fn int qcow2_co_writev(BlockDriverState *bs,
+ int64_t sector_num,
+ int remaining_sectors,
+ QEMUIOVector *qiov)
+{
+ BDRVQcowState *s = bs->opaque;
+ int index_in_cluster;
+ int n_end;
+ int ret;
+ int cur_nr_sectors; /* number of sectors in current iteration */
+ uint64_t cluster_offset;
+ QEMUIOVector hd_qiov;
+ uint64_t bytes_done = 0;
+ uint8_t *cluster_data = NULL;
+ QCowL2Meta *l2meta = NULL;
+
+ trace_qcow2_writev_start_req(qemu_coroutine_self(), sector_num,
+ remaining_sectors);
+
+ qemu_iovec_init(&hd_qiov, qiov->niov);
+
+ s->cluster_cache_offset = -1; /* disable compressed cache */
+
+ qemu_co_mutex_lock(&s->lock);
+
+ while (remaining_sectors != 0) {
+
+ l2meta = NULL;
+
+ trace_qcow2_writev_start_part(qemu_coroutine_self());
+ index_in_cluster = sector_num & (s->cluster_sectors - 1);
+ n_end = index_in_cluster + remaining_sectors;
+ if (s->crypt_method &&
+ n_end > QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors) {
+ n_end = QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors;
+ }
+
+ ret = qcow2_alloc_cluster_offset(bs, sector_num << 9,
+ index_in_cluster, n_end, &cur_nr_sectors, &cluster_offset, &l2meta);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ assert((cluster_offset & 511) == 0);
+
+ qemu_iovec_reset(&hd_qiov);
+ qemu_iovec_concat(&hd_qiov, qiov, bytes_done,
+ cur_nr_sectors * 512);
+
+ if (s->crypt_method) {
+ if (!cluster_data) {
+ cluster_data = qemu_blockalign(bs, QCOW_MAX_CRYPT_CLUSTERS *
+ s->cluster_size);
+ }
+
+ assert(hd_qiov.size <=
+ QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
+ qemu_iovec_to_buf(&hd_qiov, 0, cluster_data, hd_qiov.size);
+
+ qcow2_encrypt_sectors(s, sector_num, cluster_data,
+ cluster_data, cur_nr_sectors, 1, &s->aes_encrypt_key);
+
+ qemu_iovec_reset(&hd_qiov);
+ qemu_iovec_add(&hd_qiov, cluster_data,
+ cur_nr_sectors * 512);
+ }
+
+ qemu_co_mutex_unlock(&s->lock);
+ BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
+ trace_qcow2_writev_data(qemu_coroutine_self(),
+ (cluster_offset >> 9) + index_in_cluster);
+ ret = bdrv_co_writev(bs->file,
+ (cluster_offset >> 9) + index_in_cluster,
+ cur_nr_sectors, &hd_qiov);
+ qemu_co_mutex_lock(&s->lock);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ while (l2meta != NULL) {
+ QCowL2Meta *next;
+
+ ret = qcow2_alloc_cluster_link_l2(bs, l2meta);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ /* Take the request off the list of running requests */
+ if (l2meta->nb_clusters != 0) {
+ QLIST_REMOVE(l2meta, next_in_flight);
+ }
+
+ qemu_co_queue_restart_all(&l2meta->dependent_requests);
+
+ next = l2meta->next;
+ g_free(l2meta);
+ l2meta = next;
+ }
+
+ remaining_sectors -= cur_nr_sectors;
+ sector_num += cur_nr_sectors;
+ bytes_done += cur_nr_sectors * 512;
+ trace_qcow2_writev_done_part(qemu_coroutine_self(), cur_nr_sectors);
+ }
+ ret = 0;
+
+fail:
+ qemu_co_mutex_unlock(&s->lock);
+
+ while (l2meta != NULL) {
+ QCowL2Meta *next;
+
+ if (l2meta->nb_clusters != 0) {
+ QLIST_REMOVE(l2meta, next_in_flight);
+ }
+ qemu_co_queue_restart_all(&l2meta->dependent_requests);
+
+ next = l2meta->next;
+ g_free(l2meta);
+ l2meta = next;
+ }
+
+ qemu_iovec_destroy(&hd_qiov);
+ qemu_vfree(cluster_data);
+ trace_qcow2_writev_done_req(qemu_coroutine_self(), ret);
+
+ return ret;
+}
+
+static void qcow2_close(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ g_free(s->l1_table);
+
+ qcow2_cache_flush(bs, s->l2_table_cache);
+ qcow2_cache_flush(bs, s->refcount_block_cache);
+
+ qcow2_mark_clean(bs);
+
+ qcow2_cache_destroy(bs, s->l2_table_cache);
+ qcow2_cache_destroy(bs, s->refcount_block_cache);
+
+ g_free(s->unknown_header_fields);
+ cleanup_unknown_header_ext(bs);
+
+ g_free(s->cluster_cache);
+ qemu_vfree(s->cluster_data);
+ qcow2_refcount_close(bs);
+ qcow2_free_snapshots(bs);
+}
+
+static void qcow2_invalidate_cache(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ int flags = s->flags;
+ AES_KEY aes_encrypt_key;
+ AES_KEY aes_decrypt_key;
+ uint32_t crypt_method = 0;
+ QDict *options;
+
+ /*
+ * Backing files are read-only which makes all of their metadata immutable,
+ * that means we don't have to worry about reopening them here.
+ */
+
+ if (s->crypt_method) {
+ crypt_method = s->crypt_method;
+ memcpy(&aes_encrypt_key, &s->aes_encrypt_key, sizeof(aes_encrypt_key));
+ memcpy(&aes_decrypt_key, &s->aes_decrypt_key, sizeof(aes_decrypt_key));
+ }
+
+ qcow2_close(bs);
+
+ options = qdict_new();
+ qdict_put(options, QCOW2_OPT_LAZY_REFCOUNTS,
+ qbool_from_int(s->use_lazy_refcounts));
+
+ memset(s, 0, sizeof(BDRVQcowState));
+ qcow2_open(bs, options, flags);
+
+ QDECREF(options);
+
+ if (crypt_method) {
+ s->crypt_method = crypt_method;
+ memcpy(&s->aes_encrypt_key, &aes_encrypt_key, sizeof(aes_encrypt_key));
+ memcpy(&s->aes_decrypt_key, &aes_decrypt_key, sizeof(aes_decrypt_key));
+ }
+}
+
+static size_t header_ext_add(char *buf, uint32_t magic, const void *s,
+ size_t len, size_t buflen)
+{
+ QCowExtension *ext_backing_fmt = (QCowExtension*) buf;
+ size_t ext_len = sizeof(QCowExtension) + ((len + 7) & ~7);
+
+ if (buflen < ext_len) {
+ return -ENOSPC;
+ }
+
+ *ext_backing_fmt = (QCowExtension) {
+ .magic = cpu_to_be32(magic),
+ .len = cpu_to_be32(len),
+ };
+ memcpy(buf + sizeof(QCowExtension), s, len);
+
+ return ext_len;
+}
+
+/*
+ * Updates the qcow2 header, including the variable length parts of it, i.e.
+ * the backing file name and all extensions. qcow2 was not designed to allow
+ * such changes, so if we run out of space (we can only use the first cluster)
+ * this function may fail.
+ *
+ * Returns 0 on success, -errno in error cases.
+ */
+int qcow2_update_header(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ QCowHeader *header;
+ char *buf;
+ size_t buflen = s->cluster_size;
+ int ret;
+ uint64_t total_size;
+ uint32_t refcount_table_clusters;
+ size_t header_length;
+ Qcow2UnknownHeaderExtension *uext;
+
+ buf = qemu_blockalign(bs, buflen);
+
+ /* Header structure */
+ header = (QCowHeader*) buf;
+
+ if (buflen < sizeof(*header)) {
+ ret = -ENOSPC;
+ goto fail;
+ }
+
+ header_length = sizeof(*header) + s->unknown_header_fields_size;
+ total_size = bs->total_sectors * BDRV_SECTOR_SIZE;
+ refcount_table_clusters = s->refcount_table_size >> (s->cluster_bits - 3);
+
+ *header = (QCowHeader) {
+ /* Version 2 fields */
+ .magic = cpu_to_be32(QCOW_MAGIC),
+ .version = cpu_to_be32(s->qcow_version),
+ .backing_file_offset = 0,
+ .backing_file_size = 0,
+ .cluster_bits = cpu_to_be32(s->cluster_bits),
+ .size = cpu_to_be64(total_size),
+ .crypt_method = cpu_to_be32(s->crypt_method_header),
+ .l1_size = cpu_to_be32(s->l1_size),
+ .l1_table_offset = cpu_to_be64(s->l1_table_offset),
+ .refcount_table_offset = cpu_to_be64(s->refcount_table_offset),
+ .refcount_table_clusters = cpu_to_be32(refcount_table_clusters),
+ .nb_snapshots = cpu_to_be32(s->nb_snapshots),
+ .snapshots_offset = cpu_to_be64(s->snapshots_offset),
+
+ /* Version 3 fields */
+ .incompatible_features = cpu_to_be64(s->incompatible_features),
+ .compatible_features = cpu_to_be64(s->compatible_features),
+ .autoclear_features = cpu_to_be64(s->autoclear_features),
+ .refcount_order = cpu_to_be32(3 + REFCOUNT_SHIFT),
+ .header_length = cpu_to_be32(header_length),
+ };
+
+ /* For older versions, write a shorter header */
+ switch (s->qcow_version) {
+ case 2:
+ ret = offsetof(QCowHeader, incompatible_features);
+ break;
+ case 3:
+ ret = sizeof(*header);
+ break;
+ default:
+ ret = -EINVAL;
+ goto fail;
+ }
+
+ buf += ret;
+ buflen -= ret;
+ memset(buf, 0, buflen);
+
+ /* Preserve any unknown field in the header */
+ if (s->unknown_header_fields_size) {
+ if (buflen < s->unknown_header_fields_size) {
+ ret = -ENOSPC;
+ goto fail;
+ }
+
+ memcpy(buf, s->unknown_header_fields, s->unknown_header_fields_size);
+ buf += s->unknown_header_fields_size;
+ buflen -= s->unknown_header_fields_size;
+ }
+
+ /* Backing file format header extension */
+ if (*bs->backing_format) {
+ ret = header_ext_add(buf, QCOW2_EXT_MAGIC_BACKING_FORMAT,
+ bs->backing_format, strlen(bs->backing_format),
+ buflen);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ buf += ret;
+ buflen -= ret;
+ }
+
+ /* Feature table */
+ Qcow2Feature features[] = {
+ {
+ .type = QCOW2_FEAT_TYPE_INCOMPATIBLE,
+ .bit = QCOW2_INCOMPAT_DIRTY_BITNR,
+ .name = "dirty bit",
+ },
+ {
+ .type = QCOW2_FEAT_TYPE_COMPATIBLE,
+ .bit = QCOW2_COMPAT_LAZY_REFCOUNTS_BITNR,
+ .name = "lazy refcounts",
+ },
+ };
+
+ ret = header_ext_add(buf, QCOW2_EXT_MAGIC_FEATURE_TABLE,
+ features, sizeof(features), buflen);
+ if (ret < 0) {
+ goto fail;
+ }
+ buf += ret;
+ buflen -= ret;
+
+ /* Keep unknown header extensions */
+ QLIST_FOREACH(uext, &s->unknown_header_ext, next) {
+ ret = header_ext_add(buf, uext->magic, uext->data, uext->len, buflen);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ buf += ret;
+ buflen -= ret;
+ }
+
+ /* End of header extensions */
+ ret = header_ext_add(buf, QCOW2_EXT_MAGIC_END, NULL, 0, buflen);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ buf += ret;
+ buflen -= ret;
+
+ /* Backing file name */
+ if (*bs->backing_file) {
+ size_t backing_file_len = strlen(bs->backing_file);
+
+ if (buflen < backing_file_len) {
+ ret = -ENOSPC;
+ goto fail;
+ }
+
+ /* Using strncpy is ok here, since buf is not NUL-terminated. */
+ strncpy(buf, bs->backing_file, buflen);
+
+ header->backing_file_offset = cpu_to_be64(buf - ((char*) header));
+ header->backing_file_size = cpu_to_be32(backing_file_len);
+ }
+
+ /* Write the new header */
+ ret = bdrv_pwrite(bs->file, 0, header, s->cluster_size);
+ if (ret < 0) {
+ goto fail;
+ }
+
+ ret = 0;
+fail:
+ qemu_vfree(header);
+ return ret;
+}
+
+static int qcow2_change_backing_file(BlockDriverState *bs,
+ const char *backing_file, const char *backing_fmt)
+{
+ pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
+ pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
+
+ return qcow2_update_header(bs);
+}
+
+static int preallocate(BlockDriverState *bs)
+{
+ uint64_t nb_sectors;
+ uint64_t offset;
+ uint64_t host_offset = 0;
+ int num;
+ int ret;
+ QCowL2Meta *meta;
+
+ nb_sectors = bdrv_getlength(bs) >> 9;
+ offset = 0;
+
+ while (nb_sectors) {
+ num = MIN(nb_sectors, INT_MAX >> 9);
+ ret = qcow2_alloc_cluster_offset(bs, offset, 0, num, &num,
+ &host_offset, &meta);
+ if (ret < 0) {
+ return ret;
+ }
+
+ ret = qcow2_alloc_cluster_link_l2(bs, meta);
+ if (ret < 0) {
+ qcow2_free_any_clusters(bs, meta->alloc_offset, meta->nb_clusters,
+ QCOW2_DISCARD_NEVER);
+ return ret;
+ }
+
+ /* There are no dependent requests, but we need to remove our request
+ * from the list of in-flight requests */
+ if (meta != NULL) {
+ QLIST_REMOVE(meta, next_in_flight);
+ }
+
+ /* TODO Preallocate data if requested */
+
+ nb_sectors -= num;
+ offset += num << 9;
+ }
+
+ /*
+ * It is expected that the image file is large enough to actually contain
+ * all of the allocated clusters (otherwise we get failing reads after
+ * EOF). Extend the image to the last allocated sector.
+ */
+ if (host_offset != 0) {
+ uint8_t buf[512];
+ memset(buf, 0, 512);
+ ret = bdrv_write(bs->file, (host_offset >> 9) + num - 1, buf, 1);
+ if (ret < 0) {
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static int qcow2_create2(const char *filename, int64_t total_size,
+ const char *backing_file, const char *backing_format,
+ int flags, size_t cluster_size, int prealloc,
+ QEMUOptionParameter *options, int version)
+{
+ /* Calculate cluster_bits */
+ int cluster_bits;
+ cluster_bits = ffs(cluster_size) - 1;
+ if (cluster_bits < MIN_CLUSTER_BITS || cluster_bits > MAX_CLUSTER_BITS ||
+ (1 << cluster_bits) != cluster_size)
+ {
+ error_report(
+ "Cluster size must be a power of two between %d and %dk",
+ 1 << MIN_CLUSTER_BITS, 1 << (MAX_CLUSTER_BITS - 10));
+ return -EINVAL;
+ }
+
+ /*
+ * Open the image file and write a minimal qcow2 header.
+ *
+ * We keep things simple and start with a zero-sized image. We also
+ * do without refcount blocks or a L1 table for now. We'll fix the
+ * inconsistency later.
+ *
+ * We do need a refcount table because growing the refcount table means
+ * allocating two new refcount blocks - the seconds of which would be at
+ * 2 GB for 64k clusters, and we don't want to have a 2 GB initial file
+ * size for any qcow2 image.
+ */
+ BlockDriverState* bs;
+ QCowHeader header;
+ uint8_t* refcount_table;
+ int ret;
+
+ ret = bdrv_create_file(filename, options);
+ if (ret < 0) {
+ return ret;
+ }
+
+ ret = bdrv_file_open(&bs, filename, NULL, BDRV_O_RDWR);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* Write the header */
+ memset(&header, 0, sizeof(header));
+ header.magic = cpu_to_be32(QCOW_MAGIC);
+ header.version = cpu_to_be32(version);
+ header.cluster_bits = cpu_to_be32(cluster_bits);
+ header.size = cpu_to_be64(0);
+ header.l1_table_offset = cpu_to_be64(0);
+ header.l1_size = cpu_to_be32(0);
+ header.refcount_table_offset = cpu_to_be64(cluster_size);
+ header.refcount_table_clusters = cpu_to_be32(1);
+ header.refcount_order = cpu_to_be32(3 + REFCOUNT_SHIFT);
+ header.header_length = cpu_to_be32(sizeof(header));
+
+ if (flags & BLOCK_FLAG_ENCRYPT) {
+ header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES);
+ } else {
+ header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
+ }
+
+ if (flags & BLOCK_FLAG_LAZY_REFCOUNTS) {
+ header.compatible_features |=
+ cpu_to_be64(QCOW2_COMPAT_LAZY_REFCOUNTS);
+ }
+
+ ret = bdrv_pwrite(bs, 0, &header, sizeof(header));
+ if (ret < 0) {
+ goto out;
+ }
+
+ /* Write an empty refcount table */
+ refcount_table = g_malloc0(cluster_size);
+ ret = bdrv_pwrite(bs, cluster_size, refcount_table, cluster_size);
+ g_free(refcount_table);
+
+ if (ret < 0) {
+ goto out;
+ }
+
+ bdrv_close(bs);
+
+ /*
+ * And now open the image and make it consistent first (i.e. increase the
+ * refcount of the cluster that is occupied by the header and the refcount
+ * table)
+ */
+ BlockDriver* drv = bdrv_find_format("qcow2");
+ assert(drv != NULL);
+ ret = bdrv_open(bs, filename, NULL,
+ BDRV_O_RDWR | BDRV_O_CACHE_WB | BDRV_O_NO_FLUSH, drv);
+ if (ret < 0) {
+ goto out;
+ }
+
+ ret = qcow2_alloc_clusters(bs, 2 * cluster_size);
+ if (ret < 0) {
+ goto out;
+
+ } else if (ret != 0) {
+ error_report("Huh, first cluster in empty image is already in use?");
+ abort();
+ }
+
+ /* Okay, now that we have a valid image, let's give it the right size */
+ ret = bdrv_truncate(bs, total_size * BDRV_SECTOR_SIZE);
+ if (ret < 0) {
+ goto out;
+ }
+
+ /* Want a backing file? There you go.*/
+ if (backing_file) {
+ ret = bdrv_change_backing_file(bs, backing_file, backing_format);
+ if (ret < 0) {
+ goto out;
+ }
+ }
+
+ /* And if we're supposed to preallocate metadata, do that now */
+ if (prealloc) {
+ BDRVQcowState *s = bs->opaque;
+ qemu_co_mutex_lock(&s->lock);
+ ret = preallocate(bs);
+ qemu_co_mutex_unlock(&s->lock);
+ if (ret < 0) {
+ goto out;
+ }
+ }
+
+ ret = 0;
+out:
+ bdrv_delete(bs);
+ return ret;
+}
+
+static int qcow2_create(const char *filename, QEMUOptionParameter *options)
+{
+ const char *backing_file = NULL;
+ const char *backing_fmt = NULL;
+ uint64_t sectors = 0;
+ int flags = 0;
+ size_t cluster_size = DEFAULT_CLUSTER_SIZE;
+ int prealloc = 0;
+ int version = 2;
+
+ /* Read out options */
+ while (options && options->name) {
+ if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
+ sectors = options->value.n / 512;
+ } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
+ backing_file = options->value.s;
+ } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
+ backing_fmt = options->value.s;
+ } else if (!strcmp(options->name, BLOCK_OPT_ENCRYPT)) {
+ flags |= options->value.n ? BLOCK_FLAG_ENCRYPT : 0;
+ } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
+ if (options->value.n) {
+ cluster_size = options->value.n;
+ }
+ } else if (!strcmp(options->name, BLOCK_OPT_PREALLOC)) {
+ if (!options->value.s || !strcmp(options->value.s, "off")) {
+ prealloc = 0;
+ } else if (!strcmp(options->value.s, "metadata")) {
+ prealloc = 1;
+ } else {
+ fprintf(stderr, "Invalid preallocation mode: '%s'\n",
+ options->value.s);
+ return -EINVAL;
+ }
+ } else if (!strcmp(options->name, BLOCK_OPT_COMPAT_LEVEL)) {
+ if (!options->value.s || !strcmp(options->value.s, "0.10")) {
+ version = 2;
+ } else if (!strcmp(options->value.s, "1.1")) {
+ version = 3;
+ } else {
+ fprintf(stderr, "Invalid compatibility level: '%s'\n",
+ options->value.s);
+ return -EINVAL;
+ }
+ } else if (!strcmp(options->name, BLOCK_OPT_LAZY_REFCOUNTS)) {
+ flags |= options->value.n ? BLOCK_FLAG_LAZY_REFCOUNTS : 0;
+ }
+ options++;
+ }
+
+ if (backing_file && prealloc) {
+ fprintf(stderr, "Backing file and preallocation cannot be used at "
+ "the same time\n");
+ return -EINVAL;
+ }
+
+ if (version < 3 && (flags & BLOCK_FLAG_LAZY_REFCOUNTS)) {
+ fprintf(stderr, "Lazy refcounts only supported with compatibility "
+ "level 1.1 and above (use compat=1.1 or greater)\n");
+ return -EINVAL;
+ }
+
+ return qcow2_create2(filename, sectors, backing_file, backing_fmt, flags,
+ cluster_size, prealloc, options, version);
+}
+
+static int qcow2_make_empty(BlockDriverState *bs)
+{
+#if 0
+ /* XXX: not correct */
+ BDRVQcowState *s = bs->opaque;
+ uint32_t l1_length = s->l1_size * sizeof(uint64_t);
+ int ret;
+
+ memset(s->l1_table, 0, l1_length);
+ if (bdrv_pwrite(bs->file, s->l1_table_offset, s->l1_table, l1_length) < 0)
+ return -1;
+ ret = bdrv_truncate(bs->file, s->l1_table_offset + l1_length);
+ if (ret < 0)
+ return ret;
+
+ l2_cache_reset(bs);
+#endif
+ return 0;
+}
+
+static coroutine_fn int qcow2_co_write_zeroes(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors)
+{
+ int ret;
+ BDRVQcowState *s = bs->opaque;
+
+ /* Emulate misaligned zero writes */
+ if (sector_num % s->cluster_sectors || nb_sectors % s->cluster_sectors) {
+ return -ENOTSUP;
+ }
+
+ /* Whatever is left can use real zero clusters */
+ qemu_co_mutex_lock(&s->lock);
+ ret = qcow2_zero_clusters(bs, sector_num << BDRV_SECTOR_BITS,
+ nb_sectors);
+ qemu_co_mutex_unlock(&s->lock);
+
+ return ret;
+}
+
+static coroutine_fn int qcow2_co_discard(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors)
+{
+ int ret;
+ BDRVQcowState *s = bs->opaque;
+
+ qemu_co_mutex_lock(&s->lock);
+ ret = qcow2_discard_clusters(bs, sector_num << BDRV_SECTOR_BITS,
+ nb_sectors);
+ qemu_co_mutex_unlock(&s->lock);
+ return ret;
+}
+
+static int qcow2_truncate(BlockDriverState *bs, int64_t offset)
+{
+ BDRVQcowState *s = bs->opaque;
+ int64_t new_l1_size;
+ int ret;
+
+ if (offset & 511) {
+ error_report("The new size must be a multiple of 512");
+ return -EINVAL;
+ }
+
+ /* cannot proceed if image has snapshots */
+ if (s->nb_snapshots) {
+ error_report("Can't resize an image which has snapshots");
+ return -ENOTSUP;
+ }
+
+ /* shrinking is currently not supported */
+ if (offset < bs->total_sectors * 512) {
+ error_report("qcow2 doesn't support shrinking images yet");
+ return -ENOTSUP;
+ }
+
+ new_l1_size = size_to_l1(s, offset);
+ ret = qcow2_grow_l1_table(bs, new_l1_size, true);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* write updated header.size */
+ offset = cpu_to_be64(offset);
+ ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, size),
+ &offset, sizeof(uint64_t));
+ if (ret < 0) {
+ return ret;
+ }
+
+ s->l1_vm_state_index = new_l1_size;
+ return 0;
+}
+
+/* XXX: put compressed sectors first, then all the cluster aligned
+ tables to avoid losing bytes in alignment */
+static int qcow2_write_compressed(BlockDriverState *bs, int64_t sector_num,
+ const uint8_t *buf, int nb_sectors)
+{
+ BDRVQcowState *s = bs->opaque;
+ z_stream strm;
+ int ret, out_len;
+ uint8_t *out_buf;
+ uint64_t cluster_offset;
+
+ if (nb_sectors == 0) {
+ /* align end of file to a sector boundary to ease reading with
+ sector based I/Os */
+ cluster_offset = bdrv_getlength(bs->file);
+ cluster_offset = (cluster_offset + 511) & ~511;
+ bdrv_truncate(bs->file, cluster_offset);
+ return 0;
+ }
+
+ if (nb_sectors != s->cluster_sectors) {
+ ret = -EINVAL;
+
+ /* Zero-pad last write if image size is not cluster aligned */
+ if (sector_num + nb_sectors == bs->total_sectors &&
+ nb_sectors < s->cluster_sectors) {
+ uint8_t *pad_buf = qemu_blockalign(bs, s->cluster_size);
+ memset(pad_buf, 0, s->cluster_size);
+ memcpy(pad_buf, buf, nb_sectors * BDRV_SECTOR_SIZE);
+ ret = qcow2_write_compressed(bs, sector_num,
+ pad_buf, s->cluster_sectors);
+ qemu_vfree(pad_buf);
+ }
+ return ret;
+ }
+
+ out_buf = g_malloc(s->cluster_size + (s->cluster_size / 1000) + 128);
+
+ /* best compression, small window, no zlib header */
+ memset(&strm, 0, sizeof(strm));
+ ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION,
+ Z_DEFLATED, -12,
+ 9, Z_DEFAULT_STRATEGY);
+ if (ret != 0) {
+ ret = -EINVAL;
+ goto fail;
+ }
+
+ strm.avail_in = s->cluster_size;
+ strm.next_in = (uint8_t *)buf;
+ strm.avail_out = s->cluster_size;
+ strm.next_out = out_buf;
+
+ ret = deflate(&strm, Z_FINISH);
+ if (ret != Z_STREAM_END && ret != Z_OK) {
+ deflateEnd(&strm);
+ ret = -EINVAL;
+ goto fail;
+ }
+ out_len = strm.next_out - out_buf;
+
+ deflateEnd(&strm);
+
+ if (ret != Z_STREAM_END || out_len >= s->cluster_size) {
+ /* could not compress: write normal cluster */
+ ret = bdrv_write(bs, sector_num, buf, s->cluster_sectors);
+ if (ret < 0) {
+ goto fail;
+ }
+ } else {
+ cluster_offset = qcow2_alloc_compressed_cluster_offset(bs,
+ sector_num << 9, out_len);
+ if (!cluster_offset) {
+ ret = -EIO;
+ goto fail;
+ }
+ cluster_offset &= s->cluster_offset_mask;
+ BLKDBG_EVENT(bs->file, BLKDBG_WRITE_COMPRESSED);
+ ret = bdrv_pwrite(bs->file, cluster_offset, out_buf, out_len);
+ if (ret < 0) {
+ goto fail;
+ }
+ }
+
+ ret = 0;
+fail:
+ g_free(out_buf);
+ return ret;
+}
+
+static coroutine_fn int qcow2_co_flush_to_os(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ int ret;
+
+ qemu_co_mutex_lock(&s->lock);
+ ret = qcow2_cache_flush(bs, s->l2_table_cache);
+ if (ret < 0) {
+ qemu_co_mutex_unlock(&s->lock);
+ return ret;
+ }
+
+ if (qcow2_need_accurate_refcounts(s)) {
+ ret = qcow2_cache_flush(bs, s->refcount_block_cache);
+ if (ret < 0) {
+ qemu_co_mutex_unlock(&s->lock);
+ return ret;
+ }
+ }
+ qemu_co_mutex_unlock(&s->lock);
+
+ return 0;
+}
+
+static int64_t qcow2_vm_state_offset(BDRVQcowState *s)
+{
+ return (int64_t)s->l1_vm_state_index << (s->cluster_bits + s->l2_bits);
+}
+
+static int qcow2_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
+{
+ BDRVQcowState *s = bs->opaque;
+ bdi->cluster_size = s->cluster_size;
+ bdi->vm_state_offset = qcow2_vm_state_offset(s);
+ return 0;
+}
+
+#if 0
+static void dump_refcounts(BlockDriverState *bs)
+{
+ BDRVQcowState *s = bs->opaque;
+ int64_t nb_clusters, k, k1, size;
+ int refcount;
+
+ size = bdrv_getlength(bs->file);
+ nb_clusters = size_to_clusters(s, size);
+ for(k = 0; k < nb_clusters;) {
+ k1 = k;
+ refcount = get_refcount(bs, k);
+ k++;
+ while (k < nb_clusters && get_refcount(bs, k) == refcount)
+ k++;
+ printf("%" PRId64 ": refcount=%d nb=%" PRId64 "\n", k, refcount,
+ k - k1);
+ }
+}
+#endif
+
+static int qcow2_save_vmstate(BlockDriverState *bs, QEMUIOVector *qiov,
+ int64_t pos)
+{
+ BDRVQcowState *s = bs->opaque;
+ int growable = bs->growable;
+ int ret;
+
+ BLKDBG_EVENT(bs->file, BLKDBG_VMSTATE_SAVE);
+ bs->growable = 1;
+ ret = bdrv_pwritev(bs, qcow2_vm_state_offset(s) + pos, qiov);
+ bs->growable = growable;
+
+ return ret;
+}
+
+static int qcow2_load_vmstate(BlockDriverState *bs, uint8_t *buf,
+ int64_t pos, int size)
+{
+ BDRVQcowState *s = bs->opaque;
+ int growable = bs->growable;
+ int ret;
+
+ BLKDBG_EVENT(bs->file, BLKDBG_VMSTATE_LOAD);
+ bs->growable = 1;
+ ret = bdrv_pread(bs, qcow2_vm_state_offset(s) + pos, buf, size);
+ bs->growable = growable;
+
+ return ret;
+}
+
+static QEMUOptionParameter qcow2_create_options[] = {
+ {
+ .name = BLOCK_OPT_SIZE,
+ .type = OPT_SIZE,
+ .help = "Virtual disk size"
+ },
+ {
+ .name = BLOCK_OPT_COMPAT_LEVEL,
+ .type = OPT_STRING,
+ .help = "Compatibility level (0.10 or 1.1)"
+ },
+ {
+ .name = BLOCK_OPT_BACKING_FILE,
+ .type = OPT_STRING,
+ .help = "File name of a base image"
+ },
+ {
+ .name = BLOCK_OPT_BACKING_FMT,
+ .type = OPT_STRING,
+ .help = "Image format of the base image"
+ },
+ {
+ .name = BLOCK_OPT_ENCRYPT,
+ .type = OPT_FLAG,
+ .help = "Encrypt the image"
+ },
+ {
+ .name = BLOCK_OPT_CLUSTER_SIZE,
+ .type = OPT_SIZE,
+ .help = "qcow2 cluster size",
+ .value = { .n = DEFAULT_CLUSTER_SIZE },
+ },
+ {
+ .name = BLOCK_OPT_PREALLOC,
+ .type = OPT_STRING,
+ .help = "Preallocation mode (allowed values: off, metadata)"
+ },
+ {
+ .name = BLOCK_OPT_LAZY_REFCOUNTS,
+ .type = OPT_FLAG,
+ .help = "Postpone refcount updates",
+ },
+ { NULL }
+};
+
+static BlockDriver bdrv_qcow2 = {
+ .format_name = "qcow2",
+ .instance_size = sizeof(BDRVQcowState),
+ .bdrv_probe = qcow2_probe,
+ .bdrv_open = qcow2_open,
+ .bdrv_close = qcow2_close,
+ .bdrv_reopen_prepare = qcow2_reopen_prepare,
+ .bdrv_create = qcow2_create,
+ .bdrv_has_zero_init = bdrv_has_zero_init_1,
+ .bdrv_co_is_allocated = qcow2_co_is_allocated,
+ .bdrv_set_key = qcow2_set_key,
+ .bdrv_make_empty = qcow2_make_empty,
+
+ .bdrv_co_readv = qcow2_co_readv,
+ .bdrv_co_writev = qcow2_co_writev,
+ .bdrv_co_flush_to_os = qcow2_co_flush_to_os,
+
+ .bdrv_co_write_zeroes = qcow2_co_write_zeroes,
+ .bdrv_co_discard = qcow2_co_discard,
+ .bdrv_truncate = qcow2_truncate,
+ .bdrv_write_compressed = qcow2_write_compressed,
+
+ .bdrv_snapshot_create = qcow2_snapshot_create,
+ .bdrv_snapshot_goto = qcow2_snapshot_goto,
+ .bdrv_snapshot_delete = qcow2_snapshot_delete,
+ .bdrv_snapshot_list = qcow2_snapshot_list,
+ .bdrv_snapshot_load_tmp = qcow2_snapshot_load_tmp,
+ .bdrv_get_info = qcow2_get_info,
+
+ .bdrv_save_vmstate = qcow2_save_vmstate,
+ .bdrv_load_vmstate = qcow2_load_vmstate,
+
+ .bdrv_change_backing_file = qcow2_change_backing_file,
+
+ .bdrv_invalidate_cache = qcow2_invalidate_cache,
+
+ .create_options = qcow2_create_options,
+ .bdrv_check = qcow2_check,
+};
+
+static void bdrv_qcow2_init(void)
+{
+ bdrv_register(&bdrv_qcow2);
+}
+
+block_init(bdrv_qcow2_init);
diff --git a/contrib/qemu/block/qcow2.h b/contrib/qemu/block/qcow2.h
new file mode 100644
index 00000000000..3b2d5cda71f
--- /dev/null
+++ b/contrib/qemu/block/qcow2.h
@@ -0,0 +1,437 @@
+/*
+ * Block driver for the QCOW version 2 format
+ *
+ * Copyright (c) 2004-2006 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef BLOCK_QCOW2_H
+#define BLOCK_QCOW2_H
+
+#include "qemu/aes.h"
+#include "block/coroutine.h"
+
+//#define DEBUG_ALLOC
+//#define DEBUG_ALLOC2
+//#define DEBUG_EXT
+
+#define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb)
+
+#define QCOW_CRYPT_NONE 0
+#define QCOW_CRYPT_AES 1
+
+#define QCOW_MAX_CRYPT_CLUSTERS 32
+
+/* indicate that the refcount of the referenced cluster is exactly one. */
+#define QCOW_OFLAG_COPIED (1LL << 63)
+/* indicate that the cluster is compressed (they never have the copied flag) */
+#define QCOW_OFLAG_COMPRESSED (1LL << 62)
+/* The cluster reads as all zeros */
+#define QCOW_OFLAG_ZERO (1LL << 0)
+
+#define REFCOUNT_SHIFT 1 /* refcount size is 2 bytes */
+
+#define MIN_CLUSTER_BITS 9
+#define MAX_CLUSTER_BITS 21
+
+#define L2_CACHE_SIZE 16
+
+/* Must be at least 4 to cover all cases of refcount table growth */
+#define REFCOUNT_CACHE_SIZE 4
+
+#define DEFAULT_CLUSTER_SIZE 65536
+
+
+#define QCOW2_OPT_LAZY_REFCOUNTS "lazy_refcounts"
+#define QCOW2_OPT_DISCARD_REQUEST "pass_discard_request"
+#define QCOW2_OPT_DISCARD_SNAPSHOT "pass_discard_snapshot"
+#define QCOW2_OPT_DISCARD_OTHER "pass_discard_other"
+
+typedef struct QCowHeader {
+ uint32_t magic;
+ uint32_t version;
+ uint64_t backing_file_offset;
+ uint32_t backing_file_size;
+ uint32_t cluster_bits;
+ uint64_t size; /* in bytes */
+ uint32_t crypt_method;
+ uint32_t l1_size; /* XXX: save number of clusters instead ? */
+ uint64_t l1_table_offset;
+ uint64_t refcount_table_offset;
+ uint32_t refcount_table_clusters;
+ uint32_t nb_snapshots;
+ uint64_t snapshots_offset;
+
+ /* The following fields are only valid for version >= 3 */
+ uint64_t incompatible_features;
+ uint64_t compatible_features;
+ uint64_t autoclear_features;
+
+ uint32_t refcount_order;
+ uint32_t header_length;
+} QCowHeader;
+
+typedef struct QCowSnapshot {
+ uint64_t l1_table_offset;
+ uint32_t l1_size;
+ char *id_str;
+ char *name;
+ uint64_t disk_size;
+ uint64_t vm_state_size;
+ uint32_t date_sec;
+ uint32_t date_nsec;
+ uint64_t vm_clock_nsec;
+} QCowSnapshot;
+
+struct Qcow2Cache;
+typedef struct Qcow2Cache Qcow2Cache;
+
+typedef struct Qcow2UnknownHeaderExtension {
+ uint32_t magic;
+ uint32_t len;
+ QLIST_ENTRY(Qcow2UnknownHeaderExtension) next;
+ uint8_t data[];
+} Qcow2UnknownHeaderExtension;
+
+enum {
+ QCOW2_FEAT_TYPE_INCOMPATIBLE = 0,
+ QCOW2_FEAT_TYPE_COMPATIBLE = 1,
+ QCOW2_FEAT_TYPE_AUTOCLEAR = 2,
+};
+
+/* Incompatible feature bits */
+enum {
+ QCOW2_INCOMPAT_DIRTY_BITNR = 0,
+ QCOW2_INCOMPAT_DIRTY = 1 << QCOW2_INCOMPAT_DIRTY_BITNR,
+
+ QCOW2_INCOMPAT_MASK = QCOW2_INCOMPAT_DIRTY,
+};
+
+/* Compatible feature bits */
+enum {
+ QCOW2_COMPAT_LAZY_REFCOUNTS_BITNR = 0,
+ QCOW2_COMPAT_LAZY_REFCOUNTS = 1 << QCOW2_COMPAT_LAZY_REFCOUNTS_BITNR,
+
+ QCOW2_COMPAT_FEAT_MASK = QCOW2_COMPAT_LAZY_REFCOUNTS,
+};
+
+enum qcow2_discard_type {
+ QCOW2_DISCARD_NEVER = 0,
+ QCOW2_DISCARD_ALWAYS,
+ QCOW2_DISCARD_REQUEST,
+ QCOW2_DISCARD_SNAPSHOT,
+ QCOW2_DISCARD_OTHER,
+ QCOW2_DISCARD_MAX
+};
+
+typedef struct Qcow2Feature {
+ uint8_t type;
+ uint8_t bit;
+ char name[46];
+} QEMU_PACKED Qcow2Feature;
+
+typedef struct Qcow2DiscardRegion {
+ BlockDriverState *bs;
+ uint64_t offset;
+ uint64_t bytes;
+ QTAILQ_ENTRY(Qcow2DiscardRegion) next;
+} Qcow2DiscardRegion;
+
+typedef struct BDRVQcowState {
+ int cluster_bits;
+ int cluster_size;
+ int cluster_sectors;
+ int l2_bits;
+ int l2_size;
+ int l1_size;
+ int l1_vm_state_index;
+ int csize_shift;
+ int csize_mask;
+ uint64_t cluster_offset_mask;
+ uint64_t l1_table_offset;
+ uint64_t *l1_table;
+
+ Qcow2Cache* l2_table_cache;
+ Qcow2Cache* refcount_block_cache;
+
+ uint8_t *cluster_cache;
+ uint8_t *cluster_data;
+ uint64_t cluster_cache_offset;
+ QLIST_HEAD(QCowClusterAlloc, QCowL2Meta) cluster_allocs;
+
+ uint64_t *refcount_table;
+ uint64_t refcount_table_offset;
+ uint32_t refcount_table_size;
+ int64_t free_cluster_index;
+ int64_t free_byte_offset;
+
+ CoMutex lock;
+
+ uint32_t crypt_method; /* current crypt method, 0 if no key yet */
+ uint32_t crypt_method_header;
+ AES_KEY aes_encrypt_key;
+ AES_KEY aes_decrypt_key;
+ uint64_t snapshots_offset;
+ int snapshots_size;
+ int nb_snapshots;
+ QCowSnapshot *snapshots;
+
+ int flags;
+ int qcow_version;
+ bool use_lazy_refcounts;
+
+ bool discard_passthrough[QCOW2_DISCARD_MAX];
+
+ uint64_t incompatible_features;
+ uint64_t compatible_features;
+ uint64_t autoclear_features;
+
+ size_t unknown_header_fields_size;
+ void* unknown_header_fields;
+ QLIST_HEAD(, Qcow2UnknownHeaderExtension) unknown_header_ext;
+ QTAILQ_HEAD (, Qcow2DiscardRegion) discards;
+ bool cache_discards;
+} BDRVQcowState;
+
+/* XXX: use std qcow open function ? */
+typedef struct QCowCreateState {
+ int cluster_size;
+ int cluster_bits;
+ uint16_t *refcount_block;
+ uint64_t *refcount_table;
+ int64_t l1_table_offset;
+ int64_t refcount_table_offset;
+ int64_t refcount_block_offset;
+} QCowCreateState;
+
+struct QCowAIOCB;
+
+typedef struct Qcow2COWRegion {
+ /**
+ * Offset of the COW region in bytes from the start of the first cluster
+ * touched by the request.
+ */
+ uint64_t offset;
+
+ /** Number of sectors to copy */
+ int nb_sectors;
+} Qcow2COWRegion;
+
+/**
+ * Describes an in-flight (part of a) write request that writes to clusters
+ * that are not referenced in their L2 table yet.
+ */
+typedef struct QCowL2Meta
+{
+ /** Guest offset of the first newly allocated cluster */
+ uint64_t offset;
+
+ /** Host offset of the first newly allocated cluster */
+ uint64_t alloc_offset;
+
+ /**
+ * Number of sectors from the start of the first allocated cluster to
+ * the end of the (possibly shortened) request
+ */
+ int nb_available;
+
+ /** Number of newly allocated clusters */
+ int nb_clusters;
+
+ /**
+ * Requests that overlap with this allocation and wait to be restarted
+ * when the allocating request has completed.
+ */
+ CoQueue dependent_requests;
+
+ /**
+ * The COW Region between the start of the first allocated cluster and the
+ * area the guest actually writes to.
+ */
+ Qcow2COWRegion cow_start;
+
+ /**
+ * The COW Region between the area the guest actually writes to and the
+ * end of the last allocated cluster.
+ */
+ Qcow2COWRegion cow_end;
+
+ /** Pointer to next L2Meta of the same write request */
+ struct QCowL2Meta *next;
+
+ QLIST_ENTRY(QCowL2Meta) next_in_flight;
+} QCowL2Meta;
+
+enum {
+ QCOW2_CLUSTER_UNALLOCATED,
+ QCOW2_CLUSTER_NORMAL,
+ QCOW2_CLUSTER_COMPRESSED,
+ QCOW2_CLUSTER_ZERO
+};
+
+#define L1E_OFFSET_MASK 0x00ffffffffffff00ULL
+#define L2E_OFFSET_MASK 0x00ffffffffffff00ULL
+#define L2E_COMPRESSED_OFFSET_SIZE_MASK 0x3fffffffffffffffULL
+
+#define REFT_OFFSET_MASK 0xffffffffffffff00ULL
+
+static inline int64_t start_of_cluster(BDRVQcowState *s, int64_t offset)
+{
+ return offset & ~(s->cluster_size - 1);
+}
+
+static inline int64_t offset_into_cluster(BDRVQcowState *s, int64_t offset)
+{
+ return offset & (s->cluster_size - 1);
+}
+
+static inline int size_to_clusters(BDRVQcowState *s, int64_t size)
+{
+ return (size + (s->cluster_size - 1)) >> s->cluster_bits;
+}
+
+static inline int64_t size_to_l1(BDRVQcowState *s, int64_t size)
+{
+ int shift = s->cluster_bits + s->l2_bits;
+ return (size + (1ULL << shift) - 1) >> shift;
+}
+
+static inline int offset_to_l2_index(BDRVQcowState *s, int64_t offset)
+{
+ return (offset >> s->cluster_bits) & (s->l2_size - 1);
+}
+
+static inline int64_t align_offset(int64_t offset, int n)
+{
+ offset = (offset + n - 1) & ~(n - 1);
+ return offset;
+}
+
+static inline int qcow2_get_cluster_type(uint64_t l2_entry)
+{
+ if (l2_entry & QCOW_OFLAG_COMPRESSED) {
+ return QCOW2_CLUSTER_COMPRESSED;
+ } else if (l2_entry & QCOW_OFLAG_ZERO) {
+ return QCOW2_CLUSTER_ZERO;
+ } else if (!(l2_entry & L2E_OFFSET_MASK)) {
+ return QCOW2_CLUSTER_UNALLOCATED;
+ } else {
+ return QCOW2_CLUSTER_NORMAL;
+ }
+}
+
+/* Check whether refcounts are eager or lazy */
+static inline bool qcow2_need_accurate_refcounts(BDRVQcowState *s)
+{
+ return !(s->incompatible_features & QCOW2_INCOMPAT_DIRTY);
+}
+
+static inline uint64_t l2meta_cow_start(QCowL2Meta *m)
+{
+ return m->offset + m->cow_start.offset;
+}
+
+static inline uint64_t l2meta_cow_end(QCowL2Meta *m)
+{
+ return m->offset + m->cow_end.offset
+ + (m->cow_end.nb_sectors << BDRV_SECTOR_BITS);
+}
+
+// FIXME Need qcow2_ prefix to global functions
+
+/* qcow2.c functions */
+int qcow2_backing_read1(BlockDriverState *bs, QEMUIOVector *qiov,
+ int64_t sector_num, int nb_sectors);
+
+int qcow2_mark_dirty(BlockDriverState *bs);
+int qcow2_update_header(BlockDriverState *bs);
+
+/* qcow2-refcount.c functions */
+int qcow2_refcount_init(BlockDriverState *bs);
+void qcow2_refcount_close(BlockDriverState *bs);
+
+int64_t qcow2_alloc_clusters(BlockDriverState *bs, int64_t size);
+int qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
+ int nb_clusters);
+int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size);
+void qcow2_free_clusters(BlockDriverState *bs,
+ int64_t offset, int64_t size,
+ enum qcow2_discard_type type);
+void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
+ int nb_clusters, enum qcow2_discard_type type);
+
+int qcow2_update_snapshot_refcount(BlockDriverState *bs,
+ int64_t l1_table_offset, int l1_size, int addend);
+
+int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
+ BdrvCheckMode fix);
+
+void qcow2_process_discards(BlockDriverState *bs, int ret);
+
+/* qcow2-cluster.c functions */
+int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
+ bool exact_size);
+void qcow2_l2_cache_reset(BlockDriverState *bs);
+int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset);
+void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
+ uint8_t *out_buf, const uint8_t *in_buf,
+ int nb_sectors, int enc,
+ const AES_KEY *key);
+
+int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
+ int *num, uint64_t *cluster_offset);
+int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
+ int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m);
+uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
+ uint64_t offset,
+ int compressed_size);
+
+int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m);
+int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
+ int nb_sectors);
+int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors);
+
+/* qcow2-snapshot.c functions */
+int qcow2_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info);
+int qcow2_snapshot_goto(BlockDriverState *bs, const char *snapshot_id);
+int qcow2_snapshot_delete(BlockDriverState *bs, const char *snapshot_id);
+int qcow2_snapshot_list(BlockDriverState *bs, QEMUSnapshotInfo **psn_tab);
+int qcow2_snapshot_load_tmp(BlockDriverState *bs, const char *snapshot_name);
+
+void qcow2_free_snapshots(BlockDriverState *bs);
+int qcow2_read_snapshots(BlockDriverState *bs);
+
+/* qcow2-cache.c functions */
+Qcow2Cache *qcow2_cache_create(BlockDriverState *bs, int num_tables);
+int qcow2_cache_destroy(BlockDriverState* bs, Qcow2Cache *c);
+
+void qcow2_cache_entry_mark_dirty(Qcow2Cache *c, void *table);
+int qcow2_cache_flush(BlockDriverState *bs, Qcow2Cache *c);
+int qcow2_cache_set_dependency(BlockDriverState *bs, Qcow2Cache *c,
+ Qcow2Cache *dependency);
+void qcow2_cache_depends_on_flush(Qcow2Cache *c);
+
+int qcow2_cache_get(BlockDriverState *bs, Qcow2Cache *c, uint64_t offset,
+ void **table);
+int qcow2_cache_get_empty(BlockDriverState *bs, Qcow2Cache *c, uint64_t offset,
+ void **table);
+int qcow2_cache_put(BlockDriverState *bs, Qcow2Cache *c, void **table);
+
+#endif
diff --git a/contrib/qemu/block/qed-check.c b/contrib/qemu/block/qed-check.c
new file mode 100644
index 00000000000..b473dcd61f6
--- /dev/null
+++ b/contrib/qemu/block/qed-check.c
@@ -0,0 +1,248 @@
+/*
+ * QEMU Enhanced Disk Format Consistency Check
+ *
+ * Copyright IBM, Corp. 2010
+ *
+ * Authors:
+ * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU LGPL, version 2 or later.
+ * See the COPYING.LIB file in the top-level directory.
+ *
+ */
+
+#include "qed.h"
+
+typedef struct {
+ BDRVQEDState *s;
+ BdrvCheckResult *result;
+ bool fix; /* whether to fix invalid offsets */
+
+ uint64_t nclusters;
+ uint32_t *used_clusters; /* referenced cluster bitmap */
+
+ QEDRequest request;
+} QEDCheck;
+
+static bool qed_test_bit(uint32_t *bitmap, uint64_t n) {
+ return !!(bitmap[n / 32] & (1 << (n % 32)));
+}
+
+static void qed_set_bit(uint32_t *bitmap, uint64_t n) {
+ bitmap[n / 32] |= 1 << (n % 32);
+}
+
+/**
+ * Set bitmap bits for clusters
+ *
+ * @check: Check structure
+ * @offset: Starting offset in bytes
+ * @n: Number of clusters
+ */
+static bool qed_set_used_clusters(QEDCheck *check, uint64_t offset,
+ unsigned int n)
+{
+ uint64_t cluster = qed_bytes_to_clusters(check->s, offset);
+ unsigned int corruptions = 0;
+
+ while (n-- != 0) {
+ /* Clusters should only be referenced once */
+ if (qed_test_bit(check->used_clusters, cluster)) {
+ corruptions++;
+ }
+
+ qed_set_bit(check->used_clusters, cluster);
+ cluster++;
+ }
+
+ check->result->corruptions += corruptions;
+ return corruptions == 0;
+}
+
+/**
+ * Check an L2 table
+ *
+ * @ret: Number of invalid cluster offsets
+ */
+static unsigned int qed_check_l2_table(QEDCheck *check, QEDTable *table)
+{
+ BDRVQEDState *s = check->s;
+ unsigned int i, num_invalid = 0;
+ uint64_t last_offset = 0;
+
+ for (i = 0; i < s->table_nelems; i++) {
+ uint64_t offset = table->offsets[i];
+
+ if (qed_offset_is_unalloc_cluster(offset) ||
+ qed_offset_is_zero_cluster(offset)) {
+ continue;
+ }
+ check->result->bfi.allocated_clusters++;
+ if (last_offset && (last_offset + s->header.cluster_size != offset)) {
+ check->result->bfi.fragmented_clusters++;
+ }
+ last_offset = offset;
+
+ /* Detect invalid cluster offset */
+ if (!qed_check_cluster_offset(s, offset)) {
+ if (check->fix) {
+ table->offsets[i] = 0;
+ check->result->corruptions_fixed++;
+ } else {
+ check->result->corruptions++;
+ }
+
+ num_invalid++;
+ continue;
+ }
+
+ qed_set_used_clusters(check, offset, 1);
+ }
+
+ return num_invalid;
+}
+
+/**
+ * Descend tables and check each cluster is referenced once only
+ */
+static int qed_check_l1_table(QEDCheck *check, QEDTable *table)
+{
+ BDRVQEDState *s = check->s;
+ unsigned int i, num_invalid_l1 = 0;
+ int ret, last_error = 0;
+
+ /* Mark L1 table clusters used */
+ qed_set_used_clusters(check, s->header.l1_table_offset,
+ s->header.table_size);
+
+ for (i = 0; i < s->table_nelems; i++) {
+ unsigned int num_invalid_l2;
+ uint64_t offset = table->offsets[i];
+
+ if (qed_offset_is_unalloc_cluster(offset)) {
+ continue;
+ }
+
+ /* Detect invalid L2 offset */
+ if (!qed_check_table_offset(s, offset)) {
+ /* Clear invalid offset */
+ if (check->fix) {
+ table->offsets[i] = 0;
+ check->result->corruptions_fixed++;
+ } else {
+ check->result->corruptions++;
+ }
+
+ num_invalid_l1++;
+ continue;
+ }
+
+ if (!qed_set_used_clusters(check, offset, s->header.table_size)) {
+ continue; /* skip an invalid table */
+ }
+
+ ret = qed_read_l2_table_sync(s, &check->request, offset);
+ if (ret) {
+ check->result->check_errors++;
+ last_error = ret;
+ continue;
+ }
+
+ num_invalid_l2 = qed_check_l2_table(check,
+ check->request.l2_table->table);
+
+ /* Write out fixed L2 table */
+ if (num_invalid_l2 > 0 && check->fix) {
+ ret = qed_write_l2_table_sync(s, &check->request, 0,
+ s->table_nelems, false);
+ if (ret) {
+ check->result->check_errors++;
+ last_error = ret;
+ continue;
+ }
+ }
+ }
+
+ /* Drop reference to final table */
+ qed_unref_l2_cache_entry(check->request.l2_table);
+ check->request.l2_table = NULL;
+
+ /* Write out fixed L1 table */
+ if (num_invalid_l1 > 0 && check->fix) {
+ ret = qed_write_l1_table_sync(s, 0, s->table_nelems);
+ if (ret) {
+ check->result->check_errors++;
+ last_error = ret;
+ }
+ }
+
+ return last_error;
+}
+
+/**
+ * Check for unreferenced (leaked) clusters
+ */
+static void qed_check_for_leaks(QEDCheck *check)
+{
+ BDRVQEDState *s = check->s;
+ uint64_t i;
+
+ for (i = s->header.header_size; i < check->nclusters; i++) {
+ if (!qed_test_bit(check->used_clusters, i)) {
+ check->result->leaks++;
+ }
+ }
+}
+
+/**
+ * Mark an image clean once it passes check or has been repaired
+ */
+static void qed_check_mark_clean(BDRVQEDState *s, BdrvCheckResult *result)
+{
+ /* Skip if there were unfixable corruptions or I/O errors */
+ if (result->corruptions > 0 || result->check_errors > 0) {
+ return;
+ }
+
+ /* Skip if image is already marked clean */
+ if (!(s->header.features & QED_F_NEED_CHECK)) {
+ return;
+ }
+
+ /* Ensure fixes reach storage before clearing check bit */
+ bdrv_flush(s->bs);
+
+ s->header.features &= ~QED_F_NEED_CHECK;
+ qed_write_header_sync(s);
+}
+
+int qed_check(BDRVQEDState *s, BdrvCheckResult *result, bool fix)
+{
+ QEDCheck check = {
+ .s = s,
+ .result = result,
+ .nclusters = qed_bytes_to_clusters(s, s->file_size),
+ .request = { .l2_table = NULL },
+ .fix = fix,
+ };
+ int ret;
+
+ check.used_clusters = g_malloc0(((check.nclusters + 31) / 32) *
+ sizeof(check.used_clusters[0]));
+
+ check.result->bfi.total_clusters =
+ (s->header.image_size + s->header.cluster_size - 1) /
+ s->header.cluster_size;
+ ret = qed_check_l1_table(&check, s->l1_table);
+ if (ret == 0) {
+ /* Only check for leaks if entire image was scanned successfully */
+ qed_check_for_leaks(&check);
+
+ if (fix) {
+ qed_check_mark_clean(s, result);
+ }
+ }
+
+ g_free(check.used_clusters);
+ return ret;
+}
diff --git a/contrib/qemu/block/qed-cluster.c b/contrib/qemu/block/qed-cluster.c
new file mode 100644
index 00000000000..f64b2af8f7e
--- /dev/null
+++ b/contrib/qemu/block/qed-cluster.c
@@ -0,0 +1,165 @@
+/*
+ * QEMU Enhanced Disk Format Cluster functions
+ *
+ * Copyright IBM, Corp. 2010
+ *
+ * Authors:
+ * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU LGPL, version 2 or later.
+ * See the COPYING.LIB file in the top-level directory.
+ *
+ */
+
+#include "qed.h"
+
+/**
+ * Count the number of contiguous data clusters
+ *
+ * @s: QED state
+ * @table: L2 table
+ * @index: First cluster index
+ * @n: Maximum number of clusters
+ * @offset: Set to first cluster offset
+ *
+ * This function scans tables for contiguous clusters. A contiguous run of
+ * clusters may be allocated, unallocated, or zero.
+ */
+static unsigned int qed_count_contiguous_clusters(BDRVQEDState *s,
+ QEDTable *table,
+ unsigned int index,
+ unsigned int n,
+ uint64_t *offset)
+{
+ unsigned int end = MIN(index + n, s->table_nelems);
+ uint64_t last = table->offsets[index];
+ unsigned int i;
+
+ *offset = last;
+
+ for (i = index + 1; i < end; i++) {
+ if (qed_offset_is_unalloc_cluster(last)) {
+ /* Counting unallocated clusters */
+ if (!qed_offset_is_unalloc_cluster(table->offsets[i])) {
+ break;
+ }
+ } else if (qed_offset_is_zero_cluster(last)) {
+ /* Counting zero clusters */
+ if (!qed_offset_is_zero_cluster(table->offsets[i])) {
+ break;
+ }
+ } else {
+ /* Counting allocated clusters */
+ if (table->offsets[i] != last + s->header.cluster_size) {
+ break;
+ }
+ last = table->offsets[i];
+ }
+ }
+ return i - index;
+}
+
+typedef struct {
+ BDRVQEDState *s;
+ uint64_t pos;
+ size_t len;
+
+ QEDRequest *request;
+
+ /* User callback */
+ QEDFindClusterFunc *cb;
+ void *opaque;
+} QEDFindClusterCB;
+
+static void qed_find_cluster_cb(void *opaque, int ret)
+{
+ QEDFindClusterCB *find_cluster_cb = opaque;
+ BDRVQEDState *s = find_cluster_cb->s;
+ QEDRequest *request = find_cluster_cb->request;
+ uint64_t offset = 0;
+ size_t len = 0;
+ unsigned int index;
+ unsigned int n;
+
+ if (ret) {
+ goto out;
+ }
+
+ index = qed_l2_index(s, find_cluster_cb->pos);
+ n = qed_bytes_to_clusters(s,
+ qed_offset_into_cluster(s, find_cluster_cb->pos) +
+ find_cluster_cb->len);
+ n = qed_count_contiguous_clusters(s, request->l2_table->table,
+ index, n, &offset);
+
+ if (qed_offset_is_unalloc_cluster(offset)) {
+ ret = QED_CLUSTER_L2;
+ } else if (qed_offset_is_zero_cluster(offset)) {
+ ret = QED_CLUSTER_ZERO;
+ } else if (qed_check_cluster_offset(s, offset)) {
+ ret = QED_CLUSTER_FOUND;
+ } else {
+ ret = -EINVAL;
+ }
+
+ len = MIN(find_cluster_cb->len, n * s->header.cluster_size -
+ qed_offset_into_cluster(s, find_cluster_cb->pos));
+
+out:
+ find_cluster_cb->cb(find_cluster_cb->opaque, ret, offset, len);
+ g_free(find_cluster_cb);
+}
+
+/**
+ * Find the offset of a data cluster
+ *
+ * @s: QED state
+ * @request: L2 cache entry
+ * @pos: Byte position in device
+ * @len: Number of bytes
+ * @cb: Completion function
+ * @opaque: User data for completion function
+ *
+ * This function translates a position in the block device to an offset in the
+ * image file. It invokes the cb completion callback to report back the
+ * translated offset or unallocated range in the image file.
+ *
+ * If the L2 table exists, request->l2_table points to the L2 table cache entry
+ * and the caller must free the reference when they are finished. The cache
+ * entry is exposed in this way to avoid callers having to read the L2 table
+ * again later during request processing. If request->l2_table is non-NULL it
+ * will be unreferenced before taking on the new cache entry.
+ */
+void qed_find_cluster(BDRVQEDState *s, QEDRequest *request, uint64_t pos,
+ size_t len, QEDFindClusterFunc *cb, void *opaque)
+{
+ QEDFindClusterCB *find_cluster_cb;
+ uint64_t l2_offset;
+
+ /* Limit length to L2 boundary. Requests are broken up at the L2 boundary
+ * so that a request acts on one L2 table at a time.
+ */
+ len = MIN(len, (((pos >> s->l1_shift) + 1) << s->l1_shift) - pos);
+
+ l2_offset = s->l1_table->offsets[qed_l1_index(s, pos)];
+ if (qed_offset_is_unalloc_cluster(l2_offset)) {
+ cb(opaque, QED_CLUSTER_L1, 0, len);
+ return;
+ }
+ if (!qed_check_table_offset(s, l2_offset)) {
+ cb(opaque, -EINVAL, 0, 0);
+ return;
+ }
+
+ find_cluster_cb = g_malloc(sizeof(*find_cluster_cb));
+ find_cluster_cb->s = s;
+ find_cluster_cb->pos = pos;
+ find_cluster_cb->len = len;
+ find_cluster_cb->cb = cb;
+ find_cluster_cb->opaque = opaque;
+ find_cluster_cb->request = request;
+
+ qed_read_l2_table(s, request, l2_offset,
+ qed_find_cluster_cb, find_cluster_cb);
+}
diff --git a/contrib/qemu/block/qed-gencb.c b/contrib/qemu/block/qed-gencb.c
new file mode 100644
index 00000000000..7d7ac1ffc8e
--- /dev/null
+++ b/contrib/qemu/block/qed-gencb.c
@@ -0,0 +1,32 @@
+/*
+ * QEMU Enhanced Disk Format
+ *
+ * Copyright IBM, Corp. 2010
+ *
+ * Authors:
+ * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU LGPL, version 2 or later.
+ * See the COPYING.LIB file in the top-level directory.
+ *
+ */
+
+#include "qed.h"
+
+void *gencb_alloc(size_t len, BlockDriverCompletionFunc *cb, void *opaque)
+{
+ GenericCB *gencb = g_malloc(len);
+ gencb->cb = cb;
+ gencb->opaque = opaque;
+ return gencb;
+}
+
+void gencb_complete(void *opaque, int ret)
+{
+ GenericCB *gencb = opaque;
+ BlockDriverCompletionFunc *cb = gencb->cb;
+ void *user_opaque = gencb->opaque;
+
+ g_free(gencb);
+ cb(user_opaque, ret);
+}
diff --git a/contrib/qemu/block/qed-l2-cache.c b/contrib/qemu/block/qed-l2-cache.c
new file mode 100644
index 00000000000..e9b2aae44d9
--- /dev/null
+++ b/contrib/qemu/block/qed-l2-cache.c
@@ -0,0 +1,187 @@
+/*
+ * QEMU Enhanced Disk Format L2 Cache
+ *
+ * Copyright IBM, Corp. 2010
+ *
+ * Authors:
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU LGPL, version 2 or later.
+ * See the COPYING.LIB file in the top-level directory.
+ *
+ */
+
+/*
+ * L2 table cache usage is as follows:
+ *
+ * An open image has one L2 table cache that is used to avoid accessing the
+ * image file for recently referenced L2 tables.
+ *
+ * Cluster offset lookup translates the logical offset within the block device
+ * to a cluster offset within the image file. This is done by indexing into
+ * the L1 and L2 tables which store cluster offsets. It is here where the L2
+ * table cache serves up recently referenced L2 tables.
+ *
+ * If there is a cache miss, that L2 table is read from the image file and
+ * committed to the cache. Subsequent accesses to that L2 table will be served
+ * from the cache until the table is evicted from the cache.
+ *
+ * L2 tables are also committed to the cache when new L2 tables are allocated
+ * in the image file. Since the L2 table cache is write-through, the new L2
+ * table is first written out to the image file and then committed to the
+ * cache.
+ *
+ * Multiple I/O requests may be using an L2 table cache entry at any given
+ * time. That means an entry may be in use across several requests and
+ * reference counting is needed to free the entry at the correct time. In
+ * particular, an entry evicted from the cache will only be freed once all
+ * references are dropped.
+ *
+ * An in-flight I/O request will hold a reference to a L2 table cache entry for
+ * the period during which it needs to access the L2 table. This includes
+ * cluster offset lookup, L2 table allocation, and L2 table update when a new
+ * data cluster has been allocated.
+ *
+ * An interesting case occurs when two requests need to access an L2 table that
+ * is not in the cache. Since the operation to read the table from the image
+ * file takes some time to complete, both requests may see a cache miss and
+ * start reading the L2 table from the image file. The first to finish will
+ * commit its L2 table into the cache. When the second tries to commit its
+ * table will be deleted in favor of the existing cache entry.
+ */
+
+#include "trace.h"
+#include "qed.h"
+
+/* Each L2 holds 2GB so this let's us fully cache a 100GB disk */
+#define MAX_L2_CACHE_SIZE 50
+
+/**
+ * Initialize the L2 cache
+ */
+void qed_init_l2_cache(L2TableCache *l2_cache)
+{
+ QTAILQ_INIT(&l2_cache->entries);
+ l2_cache->n_entries = 0;
+}
+
+/**
+ * Free the L2 cache
+ */
+void qed_free_l2_cache(L2TableCache *l2_cache)
+{
+ CachedL2Table *entry, *next_entry;
+
+ QTAILQ_FOREACH_SAFE(entry, &l2_cache->entries, node, next_entry) {
+ qemu_vfree(entry->table);
+ g_free(entry);
+ }
+}
+
+/**
+ * Allocate an uninitialized entry from the cache
+ *
+ * The returned entry has a reference count of 1 and is owned by the caller.
+ * The caller must allocate the actual table field for this entry and it must
+ * be freeable using qemu_vfree().
+ */
+CachedL2Table *qed_alloc_l2_cache_entry(L2TableCache *l2_cache)
+{
+ CachedL2Table *entry;
+
+ entry = g_malloc0(sizeof(*entry));
+ entry->ref++;
+
+ trace_qed_alloc_l2_cache_entry(l2_cache, entry);
+
+ return entry;
+}
+
+/**
+ * Decrease an entry's reference count and free if necessary when the reference
+ * count drops to zero.
+ */
+void qed_unref_l2_cache_entry(CachedL2Table *entry)
+{
+ if (!entry) {
+ return;
+ }
+
+ entry->ref--;
+ trace_qed_unref_l2_cache_entry(entry, entry->ref);
+ if (entry->ref == 0) {
+ qemu_vfree(entry->table);
+ g_free(entry);
+ }
+}
+
+/**
+ * Find an entry in the L2 cache. This may return NULL and it's up to the
+ * caller to satisfy the cache miss.
+ *
+ * For a cached entry, this function increases the reference count and returns
+ * the entry.
+ */
+CachedL2Table *qed_find_l2_cache_entry(L2TableCache *l2_cache, uint64_t offset)
+{
+ CachedL2Table *entry;
+
+ QTAILQ_FOREACH(entry, &l2_cache->entries, node) {
+ if (entry->offset == offset) {
+ trace_qed_find_l2_cache_entry(l2_cache, entry, offset, entry->ref);
+ entry->ref++;
+ return entry;
+ }
+ }
+ return NULL;
+}
+
+/**
+ * Commit an L2 cache entry into the cache. This is meant to be used as part of
+ * the process to satisfy a cache miss. A caller would allocate an entry which
+ * is not actually in the L2 cache and then once the entry was valid and
+ * present on disk, the entry can be committed into the cache.
+ *
+ * Since the cache is write-through, it's important that this function is not
+ * called until the entry is present on disk and the L1 has been updated to
+ * point to the entry.
+ *
+ * N.B. This function steals a reference to the l2_table from the caller so the
+ * caller must obtain a new reference by issuing a call to
+ * qed_find_l2_cache_entry().
+ */
+void qed_commit_l2_cache_entry(L2TableCache *l2_cache, CachedL2Table *l2_table)
+{
+ CachedL2Table *entry;
+
+ entry = qed_find_l2_cache_entry(l2_cache, l2_table->offset);
+ if (entry) {
+ qed_unref_l2_cache_entry(entry);
+ qed_unref_l2_cache_entry(l2_table);
+ return;
+ }
+
+ /* Evict an unused cache entry so we have space. If all entries are in use
+ * we can grow the cache temporarily and we try to shrink back down later.
+ */
+ if (l2_cache->n_entries >= MAX_L2_CACHE_SIZE) {
+ CachedL2Table *next;
+ QTAILQ_FOREACH_SAFE(entry, &l2_cache->entries, node, next) {
+ if (entry->ref > 1) {
+ continue;
+ }
+
+ QTAILQ_REMOVE(&l2_cache->entries, entry, node);
+ l2_cache->n_entries--;
+ qed_unref_l2_cache_entry(entry);
+
+ /* Stop evicting when we've shrunk back to max size */
+ if (l2_cache->n_entries < MAX_L2_CACHE_SIZE) {
+ break;
+ }
+ }
+ }
+
+ l2_cache->n_entries++;
+ QTAILQ_INSERT_TAIL(&l2_cache->entries, l2_table, node);
+}
diff --git a/contrib/qemu/block/qed-table.c b/contrib/qemu/block/qed-table.c
new file mode 100644
index 00000000000..76d2dcccf81
--- /dev/null
+++ b/contrib/qemu/block/qed-table.c
@@ -0,0 +1,296 @@
+/*
+ * QEMU Enhanced Disk Format Table I/O
+ *
+ * Copyright IBM, Corp. 2010
+ *
+ * Authors:
+ * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU LGPL, version 2 or later.
+ * See the COPYING.LIB file in the top-level directory.
+ *
+ */
+
+#include "trace.h"
+#include "qemu/sockets.h" /* for EINPROGRESS on Windows */
+#include "qed.h"
+
+typedef struct {
+ GenericCB gencb;
+ BDRVQEDState *s;
+ QEDTable *table;
+
+ struct iovec iov;
+ QEMUIOVector qiov;
+} QEDReadTableCB;
+
+static void qed_read_table_cb(void *opaque, int ret)
+{
+ QEDReadTableCB *read_table_cb = opaque;
+ QEDTable *table = read_table_cb->table;
+ int noffsets = read_table_cb->qiov.size / sizeof(uint64_t);
+ int i;
+
+ /* Handle I/O error */
+ if (ret) {
+ goto out;
+ }
+
+ /* Byteswap offsets */
+ for (i = 0; i < noffsets; i++) {
+ table->offsets[i] = le64_to_cpu(table->offsets[i]);
+ }
+
+out:
+ /* Completion */
+ trace_qed_read_table_cb(read_table_cb->s, read_table_cb->table, ret);
+ gencb_complete(&read_table_cb->gencb, ret);
+}
+
+static void qed_read_table(BDRVQEDState *s, uint64_t offset, QEDTable *table,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ QEDReadTableCB *read_table_cb = gencb_alloc(sizeof(*read_table_cb),
+ cb, opaque);
+ QEMUIOVector *qiov = &read_table_cb->qiov;
+
+ trace_qed_read_table(s, offset, table);
+
+ read_table_cb->s = s;
+ read_table_cb->table = table;
+ read_table_cb->iov.iov_base = table->offsets,
+ read_table_cb->iov.iov_len = s->header.cluster_size * s->header.table_size,
+
+ qemu_iovec_init_external(qiov, &read_table_cb->iov, 1);
+ bdrv_aio_readv(s->bs->file, offset / BDRV_SECTOR_SIZE, qiov,
+ qiov->size / BDRV_SECTOR_SIZE,
+ qed_read_table_cb, read_table_cb);
+}
+
+typedef struct {
+ GenericCB gencb;
+ BDRVQEDState *s;
+ QEDTable *orig_table;
+ QEDTable *table;
+ bool flush; /* flush after write? */
+
+ struct iovec iov;
+ QEMUIOVector qiov;
+} QEDWriteTableCB;
+
+static void qed_write_table_cb(void *opaque, int ret)
+{
+ QEDWriteTableCB *write_table_cb = opaque;
+
+ trace_qed_write_table_cb(write_table_cb->s,
+ write_table_cb->orig_table,
+ write_table_cb->flush,
+ ret);
+
+ if (ret) {
+ goto out;
+ }
+
+ if (write_table_cb->flush) {
+ /* We still need to flush first */
+ write_table_cb->flush = false;
+ bdrv_aio_flush(write_table_cb->s->bs, qed_write_table_cb,
+ write_table_cb);
+ return;
+ }
+
+out:
+ qemu_vfree(write_table_cb->table);
+ gencb_complete(&write_table_cb->gencb, ret);
+}
+
+/**
+ * Write out an updated part or all of a table
+ *
+ * @s: QED state
+ * @offset: Offset of table in image file, in bytes
+ * @table: Table
+ * @index: Index of first element
+ * @n: Number of elements
+ * @flush: Whether or not to sync to disk
+ * @cb: Completion function
+ * @opaque: Argument for completion function
+ */
+static void qed_write_table(BDRVQEDState *s, uint64_t offset, QEDTable *table,
+ unsigned int index, unsigned int n, bool flush,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ QEDWriteTableCB *write_table_cb;
+ unsigned int sector_mask = BDRV_SECTOR_SIZE / sizeof(uint64_t) - 1;
+ unsigned int start, end, i;
+ size_t len_bytes;
+
+ trace_qed_write_table(s, offset, table, index, n);
+
+ /* Calculate indices of the first and one after last elements */
+ start = index & ~sector_mask;
+ end = (index + n + sector_mask) & ~sector_mask;
+
+ len_bytes = (end - start) * sizeof(uint64_t);
+
+ write_table_cb = gencb_alloc(sizeof(*write_table_cb), cb, opaque);
+ write_table_cb->s = s;
+ write_table_cb->orig_table = table;
+ write_table_cb->flush = flush;
+ write_table_cb->table = qemu_blockalign(s->bs, len_bytes);
+ write_table_cb->iov.iov_base = write_table_cb->table->offsets;
+ write_table_cb->iov.iov_len = len_bytes;
+ qemu_iovec_init_external(&write_table_cb->qiov, &write_table_cb->iov, 1);
+
+ /* Byteswap table */
+ for (i = start; i < end; i++) {
+ uint64_t le_offset = cpu_to_le64(table->offsets[i]);
+ write_table_cb->table->offsets[i - start] = le_offset;
+ }
+
+ /* Adjust for offset into table */
+ offset += start * sizeof(uint64_t);
+
+ bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
+ &write_table_cb->qiov,
+ write_table_cb->qiov.size / BDRV_SECTOR_SIZE,
+ qed_write_table_cb, write_table_cb);
+}
+
+/**
+ * Propagate return value from async callback
+ */
+static void qed_sync_cb(void *opaque, int ret)
+{
+ *(int *)opaque = ret;
+}
+
+int qed_read_l1_table_sync(BDRVQEDState *s)
+{
+ int ret = -EINPROGRESS;
+
+ qed_read_table(s, s->header.l1_table_offset,
+ s->l1_table, qed_sync_cb, &ret);
+ while (ret == -EINPROGRESS) {
+ qemu_aio_wait();
+ }
+
+ return ret;
+}
+
+void qed_write_l1_table(BDRVQEDState *s, unsigned int index, unsigned int n,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ BLKDBG_EVENT(s->bs->file, BLKDBG_L1_UPDATE);
+ qed_write_table(s, s->header.l1_table_offset,
+ s->l1_table, index, n, false, cb, opaque);
+}
+
+int qed_write_l1_table_sync(BDRVQEDState *s, unsigned int index,
+ unsigned int n)
+{
+ int ret = -EINPROGRESS;
+
+ qed_write_l1_table(s, index, n, qed_sync_cb, &ret);
+ while (ret == -EINPROGRESS) {
+ qemu_aio_wait();
+ }
+
+ return ret;
+}
+
+typedef struct {
+ GenericCB gencb;
+ BDRVQEDState *s;
+ uint64_t l2_offset;
+ QEDRequest *request;
+} QEDReadL2TableCB;
+
+static void qed_read_l2_table_cb(void *opaque, int ret)
+{
+ QEDReadL2TableCB *read_l2_table_cb = opaque;
+ QEDRequest *request = read_l2_table_cb->request;
+ BDRVQEDState *s = read_l2_table_cb->s;
+ CachedL2Table *l2_table = request->l2_table;
+ uint64_t l2_offset = read_l2_table_cb->l2_offset;
+
+ if (ret) {
+ /* can't trust loaded L2 table anymore */
+ qed_unref_l2_cache_entry(l2_table);
+ request->l2_table = NULL;
+ } else {
+ l2_table->offset = l2_offset;
+
+ qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
+
+ /* This is guaranteed to succeed because we just committed the entry
+ * to the cache.
+ */
+ request->l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
+ assert(request->l2_table != NULL);
+ }
+
+ gencb_complete(&read_l2_table_cb->gencb, ret);
+}
+
+void qed_read_l2_table(BDRVQEDState *s, QEDRequest *request, uint64_t offset,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ QEDReadL2TableCB *read_l2_table_cb;
+
+ qed_unref_l2_cache_entry(request->l2_table);
+
+ /* Check for cached L2 entry */
+ request->l2_table = qed_find_l2_cache_entry(&s->l2_cache, offset);
+ if (request->l2_table) {
+ cb(opaque, 0);
+ return;
+ }
+
+ request->l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
+ request->l2_table->table = qed_alloc_table(s);
+
+ read_l2_table_cb = gencb_alloc(sizeof(*read_l2_table_cb), cb, opaque);
+ read_l2_table_cb->s = s;
+ read_l2_table_cb->l2_offset = offset;
+ read_l2_table_cb->request = request;
+
+ BLKDBG_EVENT(s->bs->file, BLKDBG_L2_LOAD);
+ qed_read_table(s, offset, request->l2_table->table,
+ qed_read_l2_table_cb, read_l2_table_cb);
+}
+
+int qed_read_l2_table_sync(BDRVQEDState *s, QEDRequest *request, uint64_t offset)
+{
+ int ret = -EINPROGRESS;
+
+ qed_read_l2_table(s, request, offset, qed_sync_cb, &ret);
+ while (ret == -EINPROGRESS) {
+ qemu_aio_wait();
+ }
+
+ return ret;
+}
+
+void qed_write_l2_table(BDRVQEDState *s, QEDRequest *request,
+ unsigned int index, unsigned int n, bool flush,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ BLKDBG_EVENT(s->bs->file, BLKDBG_L2_UPDATE);
+ qed_write_table(s, request->l2_table->offset,
+ request->l2_table->table, index, n, flush, cb, opaque);
+}
+
+int qed_write_l2_table_sync(BDRVQEDState *s, QEDRequest *request,
+ unsigned int index, unsigned int n, bool flush)
+{
+ int ret = -EINPROGRESS;
+
+ qed_write_l2_table(s, request, index, n, flush, qed_sync_cb, &ret);
+ while (ret == -EINPROGRESS) {
+ qemu_aio_wait();
+ }
+
+ return ret;
+}
diff --git a/contrib/qemu/block/qed.c b/contrib/qemu/block/qed.c
new file mode 100644
index 00000000000..f767b0528ce
--- /dev/null
+++ b/contrib/qemu/block/qed.c
@@ -0,0 +1,1596 @@
+/*
+ * QEMU Enhanced Disk Format
+ *
+ * Copyright IBM, Corp. 2010
+ *
+ * Authors:
+ * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU LGPL, version 2 or later.
+ * See the COPYING.LIB file in the top-level directory.
+ *
+ */
+
+#include "qemu/timer.h"
+#include "trace.h"
+#include "qed.h"
+#include "qapi/qmp/qerror.h"
+#include "migration/migration.h"
+
+static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
+{
+ QEDAIOCB *acb = (QEDAIOCB *)blockacb;
+ bool finished = false;
+
+ /* Wait for the request to finish */
+ acb->finished = &finished;
+ while (!finished) {
+ qemu_aio_wait();
+ }
+}
+
+static const AIOCBInfo qed_aiocb_info = {
+ .aiocb_size = sizeof(QEDAIOCB),
+ .cancel = qed_aio_cancel,
+};
+
+static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
+ const char *filename)
+{
+ const QEDHeader *header = (const QEDHeader *)buf;
+
+ if (buf_size < sizeof(*header)) {
+ return 0;
+ }
+ if (le32_to_cpu(header->magic) != QED_MAGIC) {
+ return 0;
+ }
+ return 100;
+}
+
+/**
+ * Check whether an image format is raw
+ *
+ * @fmt: Backing file format, may be NULL
+ */
+static bool qed_fmt_is_raw(const char *fmt)
+{
+ return fmt && strcmp(fmt, "raw") == 0;
+}
+
+static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
+{
+ cpu->magic = le32_to_cpu(le->magic);
+ cpu->cluster_size = le32_to_cpu(le->cluster_size);
+ cpu->table_size = le32_to_cpu(le->table_size);
+ cpu->header_size = le32_to_cpu(le->header_size);
+ cpu->features = le64_to_cpu(le->features);
+ cpu->compat_features = le64_to_cpu(le->compat_features);
+ cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
+ cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
+ cpu->image_size = le64_to_cpu(le->image_size);
+ cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
+ cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
+}
+
+static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
+{
+ le->magic = cpu_to_le32(cpu->magic);
+ le->cluster_size = cpu_to_le32(cpu->cluster_size);
+ le->table_size = cpu_to_le32(cpu->table_size);
+ le->header_size = cpu_to_le32(cpu->header_size);
+ le->features = cpu_to_le64(cpu->features);
+ le->compat_features = cpu_to_le64(cpu->compat_features);
+ le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
+ le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
+ le->image_size = cpu_to_le64(cpu->image_size);
+ le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
+ le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
+}
+
+int qed_write_header_sync(BDRVQEDState *s)
+{
+ QEDHeader le;
+ int ret;
+
+ qed_header_cpu_to_le(&s->header, &le);
+ ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
+ if (ret != sizeof(le)) {
+ return ret;
+ }
+ return 0;
+}
+
+typedef struct {
+ GenericCB gencb;
+ BDRVQEDState *s;
+ struct iovec iov;
+ QEMUIOVector qiov;
+ int nsectors;
+ uint8_t *buf;
+} QEDWriteHeaderCB;
+
+static void qed_write_header_cb(void *opaque, int ret)
+{
+ QEDWriteHeaderCB *write_header_cb = opaque;
+
+ qemu_vfree(write_header_cb->buf);
+ gencb_complete(write_header_cb, ret);
+}
+
+static void qed_write_header_read_cb(void *opaque, int ret)
+{
+ QEDWriteHeaderCB *write_header_cb = opaque;
+ BDRVQEDState *s = write_header_cb->s;
+
+ if (ret) {
+ qed_write_header_cb(write_header_cb, ret);
+ return;
+ }
+
+ /* Update header */
+ qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
+
+ bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
+ write_header_cb->nsectors, qed_write_header_cb,
+ write_header_cb);
+}
+
+/**
+ * Update header in-place (does not rewrite backing filename or other strings)
+ *
+ * This function only updates known header fields in-place and does not affect
+ * extra data after the QED header.
+ */
+static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
+ void *opaque)
+{
+ /* We must write full sectors for O_DIRECT but cannot necessarily generate
+ * the data following the header if an unrecognized compat feature is
+ * active. Therefore, first read the sectors containing the header, update
+ * them, and write back.
+ */
+
+ int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
+ BDRV_SECTOR_SIZE;
+ size_t len = nsectors * BDRV_SECTOR_SIZE;
+ QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
+ cb, opaque);
+
+ write_header_cb->s = s;
+ write_header_cb->nsectors = nsectors;
+ write_header_cb->buf = qemu_blockalign(s->bs, len);
+ write_header_cb->iov.iov_base = write_header_cb->buf;
+ write_header_cb->iov.iov_len = len;
+ qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
+
+ bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
+ qed_write_header_read_cb, write_header_cb);
+}
+
+static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
+{
+ uint64_t table_entries;
+ uint64_t l2_size;
+
+ table_entries = (table_size * cluster_size) / sizeof(uint64_t);
+ l2_size = table_entries * cluster_size;
+
+ return l2_size * table_entries;
+}
+
+static bool qed_is_cluster_size_valid(uint32_t cluster_size)
+{
+ if (cluster_size < QED_MIN_CLUSTER_SIZE ||
+ cluster_size > QED_MAX_CLUSTER_SIZE) {
+ return false;
+ }
+ if (cluster_size & (cluster_size - 1)) {
+ return false; /* not power of 2 */
+ }
+ return true;
+}
+
+static bool qed_is_table_size_valid(uint32_t table_size)
+{
+ if (table_size < QED_MIN_TABLE_SIZE ||
+ table_size > QED_MAX_TABLE_SIZE) {
+ return false;
+ }
+ if (table_size & (table_size - 1)) {
+ return false; /* not power of 2 */
+ }
+ return true;
+}
+
+static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
+ uint32_t table_size)
+{
+ if (image_size % BDRV_SECTOR_SIZE != 0) {
+ return false; /* not multiple of sector size */
+ }
+ if (image_size > qed_max_image_size(cluster_size, table_size)) {
+ return false; /* image is too large */
+ }
+ return true;
+}
+
+/**
+ * Read a string of known length from the image file
+ *
+ * @file: Image file
+ * @offset: File offset to start of string, in bytes
+ * @n: String length in bytes
+ * @buf: Destination buffer
+ * @buflen: Destination buffer length in bytes
+ * @ret: 0 on success, -errno on failure
+ *
+ * The string is NUL-terminated.
+ */
+static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
+ char *buf, size_t buflen)
+{
+ int ret;
+ if (n >= buflen) {
+ return -EINVAL;
+ }
+ ret = bdrv_pread(file, offset, buf, n);
+ if (ret < 0) {
+ return ret;
+ }
+ buf[n] = '\0';
+ return 0;
+}
+
+/**
+ * Allocate new clusters
+ *
+ * @s: QED state
+ * @n: Number of contiguous clusters to allocate
+ * @ret: Offset of first allocated cluster
+ *
+ * This function only produces the offset where the new clusters should be
+ * written. It updates BDRVQEDState but does not make any changes to the image
+ * file.
+ */
+static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
+{
+ uint64_t offset = s->file_size;
+ s->file_size += n * s->header.cluster_size;
+ return offset;
+}
+
+QEDTable *qed_alloc_table(BDRVQEDState *s)
+{
+ /* Honor O_DIRECT memory alignment requirements */
+ return qemu_blockalign(s->bs,
+ s->header.cluster_size * s->header.table_size);
+}
+
+/**
+ * Allocate a new zeroed L2 table
+ */
+static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
+{
+ CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
+
+ l2_table->table = qed_alloc_table(s);
+ l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
+
+ memset(l2_table->table->offsets, 0,
+ s->header.cluster_size * s->header.table_size);
+ return l2_table;
+}
+
+static void qed_aio_next_io(void *opaque, int ret);
+
+static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
+{
+ assert(!s->allocating_write_reqs_plugged);
+
+ s->allocating_write_reqs_plugged = true;
+}
+
+static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
+{
+ QEDAIOCB *acb;
+
+ assert(s->allocating_write_reqs_plugged);
+
+ s->allocating_write_reqs_plugged = false;
+
+ acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
+ if (acb) {
+ qed_aio_next_io(acb, 0);
+ }
+}
+
+static void qed_finish_clear_need_check(void *opaque, int ret)
+{
+ /* Do nothing */
+}
+
+static void qed_flush_after_clear_need_check(void *opaque, int ret)
+{
+ BDRVQEDState *s = opaque;
+
+ bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
+
+ /* No need to wait until flush completes */
+ qed_unplug_allocating_write_reqs(s);
+}
+
+static void qed_clear_need_check(void *opaque, int ret)
+{
+ BDRVQEDState *s = opaque;
+
+ if (ret) {
+ qed_unplug_allocating_write_reqs(s);
+ return;
+ }
+
+ s->header.features &= ~QED_F_NEED_CHECK;
+ qed_write_header(s, qed_flush_after_clear_need_check, s);
+}
+
+static void qed_need_check_timer_cb(void *opaque)
+{
+ BDRVQEDState *s = opaque;
+
+ /* The timer should only fire when allocating writes have drained */
+ assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
+
+ trace_qed_need_check_timer_cb(s);
+
+ qed_plug_allocating_write_reqs(s);
+
+ /* Ensure writes are on disk before clearing flag */
+ bdrv_aio_flush(s->bs, qed_clear_need_check, s);
+}
+
+static void qed_start_need_check_timer(BDRVQEDState *s)
+{
+ trace_qed_start_need_check_timer(s);
+
+ /* Use vm_clock so we don't alter the image file while suspended for
+ * migration.
+ */
+ qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
+ get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
+}
+
+/* It's okay to call this multiple times or when no timer is started */
+static void qed_cancel_need_check_timer(BDRVQEDState *s)
+{
+ trace_qed_cancel_need_check_timer(s);
+ qemu_del_timer(s->need_check_timer);
+}
+
+static void bdrv_qed_rebind(BlockDriverState *bs)
+{
+ BDRVQEDState *s = bs->opaque;
+ s->bs = bs;
+}
+
+static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags)
+{
+ BDRVQEDState *s = bs->opaque;
+ QEDHeader le_header;
+ int64_t file_size;
+ int ret;
+
+ s->bs = bs;
+ QSIMPLEQ_INIT(&s->allocating_write_reqs);
+
+ ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
+ if (ret < 0) {
+ return ret;
+ }
+ qed_header_le_to_cpu(&le_header, &s->header);
+
+ if (s->header.magic != QED_MAGIC) {
+ return -EMEDIUMTYPE;
+ }
+ if (s->header.features & ~QED_FEATURE_MASK) {
+ /* image uses unsupported feature bits */
+ char buf[64];
+ snprintf(buf, sizeof(buf), "%" PRIx64,
+ s->header.features & ~QED_FEATURE_MASK);
+ qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
+ bs->device_name, "QED", buf);
+ return -ENOTSUP;
+ }
+ if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
+ return -EINVAL;
+ }
+
+ /* Round down file size to the last cluster */
+ file_size = bdrv_getlength(bs->file);
+ if (file_size < 0) {
+ return file_size;
+ }
+ s->file_size = qed_start_of_cluster(s, file_size);
+
+ if (!qed_is_table_size_valid(s->header.table_size)) {
+ return -EINVAL;
+ }
+ if (!qed_is_image_size_valid(s->header.image_size,
+ s->header.cluster_size,
+ s->header.table_size)) {
+ return -EINVAL;
+ }
+ if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
+ return -EINVAL;
+ }
+
+ s->table_nelems = (s->header.cluster_size * s->header.table_size) /
+ sizeof(uint64_t);
+ s->l2_shift = ffs(s->header.cluster_size) - 1;
+ s->l2_mask = s->table_nelems - 1;
+ s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
+
+ if ((s->header.features & QED_F_BACKING_FILE)) {
+ if ((uint64_t)s->header.backing_filename_offset +
+ s->header.backing_filename_size >
+ s->header.cluster_size * s->header.header_size) {
+ return -EINVAL;
+ }
+
+ ret = qed_read_string(bs->file, s->header.backing_filename_offset,
+ s->header.backing_filename_size, bs->backing_file,
+ sizeof(bs->backing_file));
+ if (ret < 0) {
+ return ret;
+ }
+
+ if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
+ pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
+ }
+ }
+
+ /* Reset unknown autoclear feature bits. This is a backwards
+ * compatibility mechanism that allows images to be opened by older
+ * programs, which "knock out" unknown feature bits. When an image is
+ * opened by a newer program again it can detect that the autoclear
+ * feature is no longer valid.
+ */
+ if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
+ !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
+ s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
+
+ ret = qed_write_header_sync(s);
+ if (ret) {
+ return ret;
+ }
+
+ /* From here on only known autoclear feature bits are valid */
+ bdrv_flush(bs->file);
+ }
+
+ s->l1_table = qed_alloc_table(s);
+ qed_init_l2_cache(&s->l2_cache);
+
+ ret = qed_read_l1_table_sync(s);
+ if (ret) {
+ goto out;
+ }
+
+ /* If image was not closed cleanly, check consistency */
+ if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
+ /* Read-only images cannot be fixed. There is no risk of corruption
+ * since write operations are not possible. Therefore, allow
+ * potentially inconsistent images to be opened read-only. This can
+ * aid data recovery from an otherwise inconsistent image.
+ */
+ if (!bdrv_is_read_only(bs->file) &&
+ !(flags & BDRV_O_INCOMING)) {
+ BdrvCheckResult result = {0};
+
+ ret = qed_check(s, &result, true);
+ if (ret) {
+ goto out;
+ }
+ }
+ }
+
+ s->need_check_timer = qemu_new_timer_ns(vm_clock,
+ qed_need_check_timer_cb, s);
+
+out:
+ if (ret) {
+ qed_free_l2_cache(&s->l2_cache);
+ qemu_vfree(s->l1_table);
+ }
+ return ret;
+}
+
+/* We have nothing to do for QED reopen, stubs just return
+ * success */
+static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
+ BlockReopenQueue *queue, Error **errp)
+{
+ return 0;
+}
+
+static void bdrv_qed_close(BlockDriverState *bs)
+{
+ BDRVQEDState *s = bs->opaque;
+
+ qed_cancel_need_check_timer(s);
+ qemu_free_timer(s->need_check_timer);
+
+ /* Ensure writes reach stable storage */
+ bdrv_flush(bs->file);
+
+ /* Clean shutdown, no check required on next open */
+ if (s->header.features & QED_F_NEED_CHECK) {
+ s->header.features &= ~QED_F_NEED_CHECK;
+ qed_write_header_sync(s);
+ }
+
+ qed_free_l2_cache(&s->l2_cache);
+ qemu_vfree(s->l1_table);
+}
+
+static int qed_create(const char *filename, uint32_t cluster_size,
+ uint64_t image_size, uint32_t table_size,
+ const char *backing_file, const char *backing_fmt)
+{
+ QEDHeader header = {
+ .magic = QED_MAGIC,
+ .cluster_size = cluster_size,
+ .table_size = table_size,
+ .header_size = 1,
+ .features = 0,
+ .compat_features = 0,
+ .l1_table_offset = cluster_size,
+ .image_size = image_size,
+ };
+ QEDHeader le_header;
+ uint8_t *l1_table = NULL;
+ size_t l1_size = header.cluster_size * header.table_size;
+ int ret = 0;
+ BlockDriverState *bs = NULL;
+
+ ret = bdrv_create_file(filename, NULL);
+ if (ret < 0) {
+ return ret;
+ }
+
+ ret = bdrv_file_open(&bs, filename, NULL, BDRV_O_RDWR | BDRV_O_CACHE_WB);
+ if (ret < 0) {
+ return ret;
+ }
+
+ /* File must start empty and grow, check truncate is supported */
+ ret = bdrv_truncate(bs, 0);
+ if (ret < 0) {
+ goto out;
+ }
+
+ if (backing_file) {
+ header.features |= QED_F_BACKING_FILE;
+ header.backing_filename_offset = sizeof(le_header);
+ header.backing_filename_size = strlen(backing_file);
+
+ if (qed_fmt_is_raw(backing_fmt)) {
+ header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
+ }
+ }
+
+ qed_header_cpu_to_le(&header, &le_header);
+ ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
+ if (ret < 0) {
+ goto out;
+ }
+ ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
+ header.backing_filename_size);
+ if (ret < 0) {
+ goto out;
+ }
+
+ l1_table = g_malloc0(l1_size);
+ ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
+ if (ret < 0) {
+ goto out;
+ }
+
+ ret = 0; /* success */
+out:
+ g_free(l1_table);
+ bdrv_delete(bs);
+ return ret;
+}
+
+static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
+{
+ uint64_t image_size = 0;
+ uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
+ uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
+ const char *backing_file = NULL;
+ const char *backing_fmt = NULL;
+
+ while (options && options->name) {
+ if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
+ image_size = options->value.n;
+ } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
+ backing_file = options->value.s;
+ } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
+ backing_fmt = options->value.s;
+ } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
+ if (options->value.n) {
+ cluster_size = options->value.n;
+ }
+ } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
+ if (options->value.n) {
+ table_size = options->value.n;
+ }
+ }
+ options++;
+ }
+
+ if (!qed_is_cluster_size_valid(cluster_size)) {
+ fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
+ QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
+ return -EINVAL;
+ }
+ if (!qed_is_table_size_valid(table_size)) {
+ fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
+ QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
+ return -EINVAL;
+ }
+ if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
+ fprintf(stderr, "QED image size must be a non-zero multiple of "
+ "cluster size and less than %" PRIu64 " bytes\n",
+ qed_max_image_size(cluster_size, table_size));
+ return -EINVAL;
+ }
+
+ return qed_create(filename, cluster_size, image_size, table_size,
+ backing_file, backing_fmt);
+}
+
+typedef struct {
+ Coroutine *co;
+ int is_allocated;
+ int *pnum;
+} QEDIsAllocatedCB;
+
+static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
+{
+ QEDIsAllocatedCB *cb = opaque;
+ *cb->pnum = len / BDRV_SECTOR_SIZE;
+ cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
+ if (cb->co) {
+ qemu_coroutine_enter(cb->co, NULL);
+ }
+}
+
+static int coroutine_fn bdrv_qed_co_is_allocated(BlockDriverState *bs,
+ int64_t sector_num,
+ int nb_sectors, int *pnum)
+{
+ BDRVQEDState *s = bs->opaque;
+ uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
+ size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
+ QEDIsAllocatedCB cb = {
+ .is_allocated = -1,
+ .pnum = pnum,
+ };
+ QEDRequest request = { .l2_table = NULL };
+
+ qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
+
+ /* Now sleep if the callback wasn't invoked immediately */
+ while (cb.is_allocated == -1) {
+ cb.co = qemu_coroutine_self();
+ qemu_coroutine_yield();
+ }
+
+ qed_unref_l2_cache_entry(request.l2_table);
+
+ return cb.is_allocated;
+}
+
+static int bdrv_qed_make_empty(BlockDriverState *bs)
+{
+ return -ENOTSUP;
+}
+
+static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
+{
+ return acb->common.bs->opaque;
+}
+
+/**
+ * Read from the backing file or zero-fill if no backing file
+ *
+ * @s: QED state
+ * @pos: Byte position in device
+ * @qiov: Destination I/O vector
+ * @cb: Completion function
+ * @opaque: User data for completion function
+ *
+ * This function reads qiov->size bytes starting at pos from the backing file.
+ * If there is no backing file then zeroes are read.
+ */
+static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
+ QEMUIOVector *qiov,
+ BlockDriverCompletionFunc *cb, void *opaque)
+{
+ uint64_t backing_length = 0;
+ size_t size;
+
+ /* If there is a backing file, get its length. Treat the absence of a
+ * backing file like a zero length backing file.
+ */
+ if (s->bs->backing_hd) {
+ int64_t l = bdrv_getlength(s->bs->backing_hd);
+ if (l < 0) {
+ cb(opaque, l);
+ return;
+ }
+ backing_length = l;
+ }
+
+ /* Zero all sectors if reading beyond the end of the backing file */
+ if (pos >= backing_length ||
+ pos + qiov->size > backing_length) {
+ qemu_iovec_memset(qiov, 0, 0, qiov->size);
+ }
+
+ /* Complete now if there are no backing file sectors to read */
+ if (pos >= backing_length) {
+ cb(opaque, 0);
+ return;
+ }
+
+ /* If the read straddles the end of the backing file, shorten it */
+ size = MIN((uint64_t)backing_length - pos, qiov->size);
+
+ BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
+ bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
+ qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
+}
+
+typedef struct {
+ GenericCB gencb;
+ BDRVQEDState *s;
+ QEMUIOVector qiov;
+ struct iovec iov;
+ uint64_t offset;
+} CopyFromBackingFileCB;
+
+static void qed_copy_from_backing_file_cb(void *opaque, int ret)
+{
+ CopyFromBackingFileCB *copy_cb = opaque;
+ qemu_vfree(copy_cb->iov.iov_base);
+ gencb_complete(&copy_cb->gencb, ret);
+}
+
+static void qed_copy_from_backing_file_write(void *opaque, int ret)
+{
+ CopyFromBackingFileCB *copy_cb = opaque;
+ BDRVQEDState *s = copy_cb->s;
+
+ if (ret) {
+ qed_copy_from_backing_file_cb(copy_cb, ret);
+ return;
+ }
+
+ BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
+ bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
+ &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
+ qed_copy_from_backing_file_cb, copy_cb);
+}
+
+/**
+ * Copy data from backing file into the image
+ *
+ * @s: QED state
+ * @pos: Byte position in device
+ * @len: Number of bytes
+ * @offset: Byte offset in image file
+ * @cb: Completion function
+ * @opaque: User data for completion function
+ */
+static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
+ uint64_t len, uint64_t offset,
+ BlockDriverCompletionFunc *cb,
+ void *opaque)
+{
+ CopyFromBackingFileCB *copy_cb;
+
+ /* Skip copy entirely if there is no work to do */
+ if (len == 0) {
+ cb(opaque, 0);
+ return;
+ }
+
+ copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
+ copy_cb->s = s;
+ copy_cb->offset = offset;
+ copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
+ copy_cb->iov.iov_len = len;
+ qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
+
+ qed_read_backing_file(s, pos, &copy_cb->qiov,
+ qed_copy_from_backing_file_write, copy_cb);
+}
+
+/**
+ * Link one or more contiguous clusters into a table
+ *
+ * @s: QED state
+ * @table: L2 table
+ * @index: First cluster index
+ * @n: Number of contiguous clusters
+ * @cluster: First cluster offset
+ *
+ * The cluster offset may be an allocated byte offset in the image file, the
+ * zero cluster marker, or the unallocated cluster marker.
+ */
+static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
+ unsigned int n, uint64_t cluster)
+{
+ int i;
+ for (i = index; i < index + n; i++) {
+ table->offsets[i] = cluster;
+ if (!qed_offset_is_unalloc_cluster(cluster) &&
+ !qed_offset_is_zero_cluster(cluster)) {
+ cluster += s->header.cluster_size;
+ }
+ }
+}
+
+static void qed_aio_complete_bh(void *opaque)
+{
+ QEDAIOCB *acb = opaque;
+ BlockDriverCompletionFunc *cb = acb->common.cb;
+ void *user_opaque = acb->common.opaque;
+ int ret = acb->bh_ret;
+ bool *finished = acb->finished;
+
+ qemu_bh_delete(acb->bh);
+ qemu_aio_release(acb);
+
+ /* Invoke callback */
+ cb(user_opaque, ret);
+
+ /* Signal cancel completion */
+ if (finished) {
+ *finished = true;
+ }
+}
+
+static void qed_aio_complete(QEDAIOCB *acb, int ret)
+{
+ BDRVQEDState *s = acb_to_s(acb);
+
+ trace_qed_aio_complete(s, acb, ret);
+
+ /* Free resources */
+ qemu_iovec_destroy(&acb->cur_qiov);
+ qed_unref_l2_cache_entry(acb->request.l2_table);
+
+ /* Free the buffer we may have allocated for zero writes */
+ if (acb->flags & QED_AIOCB_ZERO) {
+ qemu_vfree(acb->qiov->iov[0].iov_base);
+ acb->qiov->iov[0].iov_base = NULL;
+ }
+
+ /* Arrange for a bh to invoke the completion function */
+ acb->bh_ret = ret;
+ acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
+ qemu_bh_schedule(acb->bh);
+
+ /* Start next allocating write request waiting behind this one. Note that
+ * requests enqueue themselves when they first hit an unallocated cluster
+ * but they wait until the entire request is finished before waking up the
+ * next request in the queue. This ensures that we don't cycle through
+ * requests multiple times but rather finish one at a time completely.
+ */
+ if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
+ QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
+ acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
+ if (acb) {
+ qed_aio_next_io(acb, 0);
+ } else if (s->header.features & QED_F_NEED_CHECK) {
+ qed_start_need_check_timer(s);
+ }
+ }
+}
+
+/**
+ * Commit the current L2 table to the cache
+ */
+static void qed_commit_l2_update(void *opaque, int ret)
+{
+ QEDAIOCB *acb = opaque;
+ BDRVQEDState *s = acb_to_s(acb);
+ CachedL2Table *l2_table = acb->request.l2_table;
+ uint64_t l2_offset = l2_table->offset;
+
+ qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
+
+ /* This is guaranteed to succeed because we just committed the entry to the
+ * cache.
+ */
+ acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
+ assert(acb->request.l2_table != NULL);
+
+ qed_aio_next_io(opaque, ret);
+}
+
+/**
+ * Update L1 table with new L2 table offset and write it out
+ */
+static void qed_aio_write_l1_update(void *opaque, int ret)
+{
+ QEDAIOCB *acb = opaque;
+ BDRVQEDState *s = acb_to_s(acb);
+ int index;
+
+ if (ret) {
+ qed_aio_complete(acb, ret);
+ return;
+ }
+
+ index = qed_l1_index(s, acb->cur_pos);
+ s->l1_table->offsets[index] = acb->request.l2_table->offset;
+
+ qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
+}
+
+/**
+ * Update L2 table with new cluster offsets and write them out
+ */
+static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
+{
+ BDRVQEDState *s = acb_to_s(acb);
+ bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
+ int index;
+
+ if (ret) {
+ goto err;
+ }
+
+ if (need_alloc) {
+ qed_unref_l2_cache_entry(acb->request.l2_table);
+ acb->request.l2_table = qed_new_l2_table(s);
+ }
+
+ index = qed_l2_index(s, acb->cur_pos);
+ qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
+ offset);
+
+ if (need_alloc) {
+ /* Write out the whole new L2 table */
+ qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
+ qed_aio_write_l1_update, acb);
+ } else {
+ /* Write out only the updated part of the L2 table */
+ qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
+ qed_aio_next_io, acb);
+ }
+ return;
+
+err:
+ qed_aio_complete(acb, ret);
+}
+
+static void qed_aio_write_l2_update_cb(void *opaque, int ret)
+{
+ QEDAIOCB *acb = opaque;
+ qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
+}
+
+/**
+ * Flush new data clusters before updating the L2 table
+ *
+ * This flush is necessary when a backing file is in use. A crash during an
+ * allocating write could result in empty clusters in the image. If the write
+ * only touched a subregion of the cluster, then backing image sectors have
+ * been lost in the untouched region. The solution is to flush after writing a
+ * new data cluster and before updating the L2 table.
+ */
+static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
+{
+ QEDAIOCB *acb = opaque;
+ BDRVQEDState *s = acb_to_s(acb);
+
+ if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
+ qed_aio_complete(acb, -EIO);
+ }
+}
+
+/**
+ * Write data to the image file
+ */
+static void qed_aio_write_main(void *opaque, int ret)
+{
+ QEDAIOCB *acb = opaque;
+ BDRVQEDState *s = acb_to_s(acb);
+ uint64_t offset = acb->cur_cluster +
+ qed_offset_into_cluster(s, acb->cur_pos);
+ BlockDriverCompletionFunc *next_fn;
+
+ trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
+
+ if (ret) {
+ qed_aio_complete(acb, ret);
+ return;
+ }
+
+ if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
+ next_fn = qed_aio_next_io;
+ } else {
+ if (s->bs->backing_hd) {
+ next_fn = qed_aio_write_flush_before_l2_update;
+ } else {
+ next_fn = qed_aio_write_l2_update_cb;
+ }
+ }
+
+ BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
+ bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
+ &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
+ next_fn, acb);
+}
+
+/**
+ * Populate back untouched region of new data cluster
+ */
+static void qed_aio_write_postfill(void *opaque, int ret)
+{
+ QEDAIOCB *acb = opaque;
+ BDRVQEDState *s = acb_to_s(acb);
+ uint64_t start = acb->cur_pos + acb->cur_qiov.size;
+ uint64_t len =
+ qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
+ uint64_t offset = acb->cur_cluster +
+ qed_offset_into_cluster(s, acb->cur_pos) +
+ acb->cur_qiov.size;
+
+ if (ret) {
+ qed_aio_complete(acb, ret);
+ return;
+ }
+
+ trace_qed_aio_write_postfill(s, acb, start, len, offset);
+ qed_copy_from_backing_file(s, start, len, offset,
+ qed_aio_write_main, acb);
+}
+
+/**
+ * Populate front untouched region of new data cluster
+ */
+static void qed_aio_write_prefill(void *opaque, int ret)
+{
+ QEDAIOCB *acb = opaque;
+ BDRVQEDState *s = acb_to_s(acb);
+ uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
+ uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
+
+ trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
+ qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
+ qed_aio_write_postfill, acb);
+}
+
+/**
+ * Check if the QED_F_NEED_CHECK bit should be set during allocating write
+ */
+static bool qed_should_set_need_check(BDRVQEDState *s)
+{
+ /* The flush before L2 update path ensures consistency */
+ if (s->bs->backing_hd) {
+ return false;
+ }
+
+ return !(s->header.features & QED_F_NEED_CHECK);
+}
+
+static void qed_aio_write_zero_cluster(void *opaque, int ret)
+{
+ QEDAIOCB *acb = opaque;
+
+ if (ret) {
+ qed_aio_complete(acb, ret);
+ return;
+ }
+
+ qed_aio_write_l2_update(acb, 0, 1);
+}
+
+/**
+ * Write new data cluster
+ *
+ * @acb: Write request
+ * @len: Length in bytes
+ *
+ * This path is taken when writing to previously unallocated clusters.
+ */
+static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
+{
+ BDRVQEDState *s = acb_to_s(acb);
+ BlockDriverCompletionFunc *cb;
+
+ /* Cancel timer when the first allocating request comes in */
+ if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
+ qed_cancel_need_check_timer(s);
+ }
+
+ /* Freeze this request if another allocating write is in progress */
+ if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
+ QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
+ }
+ if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
+ s->allocating_write_reqs_plugged) {
+ return; /* wait for existing request to finish */
+ }
+
+ acb->cur_nclusters = qed_bytes_to_clusters(s,
+ qed_offset_into_cluster(s, acb->cur_pos) + len);
+ qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
+
+ if (acb->flags & QED_AIOCB_ZERO) {
+ /* Skip ahead if the clusters are already zero */
+ if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
+ qed_aio_next_io(acb, 0);
+ return;
+ }
+
+ cb = qed_aio_write_zero_cluster;
+ } else {
+ cb = qed_aio_write_prefill;
+ acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
+ }
+
+ if (qed_should_set_need_check(s)) {
+ s->header.features |= QED_F_NEED_CHECK;
+ qed_write_header(s, cb, acb);
+ } else {
+ cb(acb, 0);
+ }
+}
+
+/**
+ * Write data cluster in place
+ *
+ * @acb: Write request
+ * @offset: Cluster offset in bytes
+ * @len: Length in bytes
+ *
+ * This path is taken when writing to already allocated clusters.
+ */
+static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
+{
+ /* Allocate buffer for zero writes */
+ if (acb->flags & QED_AIOCB_ZERO) {
+ struct iovec *iov = acb->qiov->iov;
+
+ if (!iov->iov_base) {
+ iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
+ memset(iov->iov_base, 0, iov->iov_len);
+ }
+ }
+
+ /* Calculate the I/O vector */
+ acb->cur_cluster = offset;
+ qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
+
+ /* Do the actual write */
+ qed_aio_write_main(acb, 0);
+}
+
+/**
+ * Write data cluster
+ *
+ * @opaque: Write request
+ * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
+ * or -errno
+ * @offset: Cluster offset in bytes
+ * @len: Length in bytes
+ *
+ * Callback from qed_find_cluster().
+ */
+static void qed_aio_write_data(void *opaque, int ret,
+ uint64_t offset, size_t len)
+{
+ QEDAIOCB *acb = opaque;
+
+ trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
+
+ acb->find_cluster_ret = ret;
+
+ switch (ret) {
+ case QED_CLUSTER_FOUND:
+ qed_aio_write_inplace(acb, offset, len);
+ break;
+
+ case QED_CLUSTER_L2:
+ case QED_CLUSTER_L1:
+ case QED_CLUSTER_ZERO:
+ qed_aio_write_alloc(acb, len);
+ break;
+
+ default:
+ qed_aio_complete(acb, ret);
+ break;
+ }
+}
+
+/**
+ * Read data cluster
+ *
+ * @opaque: Read request
+ * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
+ * or -errno
+ * @offset: Cluster offset in bytes
+ * @len: Length in bytes
+ *
+ * Callback from qed_find_cluster().
+ */
+static void qed_aio_read_data(void *opaque, int ret,
+ uint64_t offset, size_t len)
+{
+ QEDAIOCB *acb = opaque;
+ BDRVQEDState *s = acb_to_s(acb);
+ BlockDriverState *bs = acb->common.bs;
+
+ /* Adjust offset into cluster */
+ offset += qed_offset_into_cluster(s, acb->cur_pos);
+
+ trace_qed_aio_read_data(s, acb, ret, offset, len);
+
+ if (ret < 0) {
+ goto err;
+ }
+
+ qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
+
+ /* Handle zero cluster and backing file reads */
+ if (ret == QED_CLUSTER_ZERO) {
+ qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
+ qed_aio_next_io(acb, 0);
+ return;
+ } else if (ret != QED_CLUSTER_FOUND) {
+ qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
+ qed_aio_next_io, acb);
+ return;
+ }
+
+ BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
+ bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
+ &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
+ qed_aio_next_io, acb);
+ return;
+
+err:
+ qed_aio_complete(acb, ret);
+}
+
+/**
+ * Begin next I/O or complete the request
+ */
+static void qed_aio_next_io(void *opaque, int ret)
+{
+ QEDAIOCB *acb = opaque;
+ BDRVQEDState *s = acb_to_s(acb);
+ QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
+ qed_aio_write_data : qed_aio_read_data;
+
+ trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
+
+ /* Handle I/O error */
+ if (ret) {
+ qed_aio_complete(acb, ret);
+ return;
+ }
+
+ acb->qiov_offset += acb->cur_qiov.size;
+ acb->cur_pos += acb->cur_qiov.size;
+ qemu_iovec_reset(&acb->cur_qiov);
+
+ /* Complete request */
+ if (acb->cur_pos >= acb->end_pos) {
+ qed_aio_complete(acb, 0);
+ return;
+ }
+
+ /* Find next cluster and start I/O */
+ qed_find_cluster(s, &acb->request,
+ acb->cur_pos, acb->end_pos - acb->cur_pos,
+ io_fn, acb);
+}
+
+static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
+ int64_t sector_num,
+ QEMUIOVector *qiov, int nb_sectors,
+ BlockDriverCompletionFunc *cb,
+ void *opaque, int flags)
+{
+ QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
+
+ trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
+ opaque, flags);
+
+ acb->flags = flags;
+ acb->finished = NULL;
+ acb->qiov = qiov;
+ acb->qiov_offset = 0;
+ acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
+ acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
+ acb->request.l2_table = NULL;
+ qemu_iovec_init(&acb->cur_qiov, qiov->niov);
+
+ /* Start request */
+ qed_aio_next_io(acb, 0);
+ return &acb->common;
+}
+
+static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
+ int64_t sector_num,
+ QEMUIOVector *qiov, int nb_sectors,
+ BlockDriverCompletionFunc *cb,
+ void *opaque)
+{
+ return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
+}
+
+static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
+ int64_t sector_num,
+ QEMUIOVector *qiov, int nb_sectors,
+ BlockDriverCompletionFunc *cb,
+ void *opaque)
+{
+ return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
+ opaque, QED_AIOCB_WRITE);
+}
+
+typedef struct {
+ Coroutine *co;
+ int ret;
+ bool done;
+} QEDWriteZeroesCB;
+
+static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
+{
+ QEDWriteZeroesCB *cb = opaque;
+
+ cb->done = true;
+ cb->ret = ret;
+ if (cb->co) {
+ qemu_coroutine_enter(cb->co, NULL);
+ }
+}
+
+static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
+ int64_t sector_num,
+ int nb_sectors)
+{
+ BlockDriverAIOCB *blockacb;
+ BDRVQEDState *s = bs->opaque;
+ QEDWriteZeroesCB cb = { .done = false };
+ QEMUIOVector qiov;
+ struct iovec iov;
+
+ /* Refuse if there are untouched backing file sectors */
+ if (bs->backing_hd) {
+ if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
+ return -ENOTSUP;
+ }
+ if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
+ return -ENOTSUP;
+ }
+ }
+
+ /* Zero writes start without an I/O buffer. If a buffer becomes necessary
+ * then it will be allocated during request processing.
+ */
+ iov.iov_base = NULL,
+ iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
+
+ qemu_iovec_init_external(&qiov, &iov, 1);
+ blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
+ qed_co_write_zeroes_cb, &cb,
+ QED_AIOCB_WRITE | QED_AIOCB_ZERO);
+ if (!blockacb) {
+ return -EIO;
+ }
+ if (!cb.done) {
+ cb.co = qemu_coroutine_self();
+ qemu_coroutine_yield();
+ }
+ assert(cb.done);
+ return cb.ret;
+}
+
+static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
+{
+ BDRVQEDState *s = bs->opaque;
+ uint64_t old_image_size;
+ int ret;
+
+ if (!qed_is_image_size_valid(offset, s->header.cluster_size,
+ s->header.table_size)) {
+ return -EINVAL;
+ }
+
+ /* Shrinking is currently not supported */
+ if ((uint64_t)offset < s->header.image_size) {
+ return -ENOTSUP;
+ }
+
+ old_image_size = s->header.image_size;
+ s->header.image_size = offset;
+ ret = qed_write_header_sync(s);
+ if (ret < 0) {
+ s->header.image_size = old_image_size;
+ }
+ return ret;
+}
+
+static int64_t bdrv_qed_getlength(BlockDriverState *bs)
+{
+ BDRVQEDState *s = bs->opaque;
+ return s->header.image_size;
+}
+
+static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
+{
+ BDRVQEDState *s = bs->opaque;
+
+ memset(bdi, 0, sizeof(*bdi));
+ bdi->cluster_size = s->header.cluster_size;
+ bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
+ return 0;
+}
+
+static int bdrv_qed_change_backing_file(BlockDriverState *bs,
+ const char *backing_file,
+ const char *backing_fmt)
+{
+ BDRVQEDState *s = bs->opaque;
+ QEDHeader new_header, le_header;
+ void *buffer;
+ size_t buffer_len, backing_file_len;
+ int ret;
+
+ /* Refuse to set backing filename if unknown compat feature bits are
+ * active. If the image uses an unknown compat feature then we may not
+ * know the layout of data following the header structure and cannot safely
+ * add a new string.
+ */
+ if (backing_file && (s->header.compat_features &
+ ~QED_COMPAT_FEATURE_MASK)) {
+ return -ENOTSUP;
+ }
+
+ memcpy(&new_header, &s->header, sizeof(new_header));
+
+ new_header.features &= ~(QED_F_BACKING_FILE |
+ QED_F_BACKING_FORMAT_NO_PROBE);
+
+ /* Adjust feature flags */
+ if (backing_file) {
+ new_header.features |= QED_F_BACKING_FILE;
+
+ if (qed_fmt_is_raw(backing_fmt)) {
+ new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
+ }
+ }
+
+ /* Calculate new header size */
+ backing_file_len = 0;
+
+ if (backing_file) {
+ backing_file_len = strlen(backing_file);
+ }
+
+ buffer_len = sizeof(new_header);
+ new_header.backing_filename_offset = buffer_len;
+ new_header.backing_filename_size = backing_file_len;
+ buffer_len += backing_file_len;
+
+ /* Make sure we can rewrite header without failing */
+ if (buffer_len > new_header.header_size * new_header.cluster_size) {
+ return -ENOSPC;
+ }
+
+ /* Prepare new header */
+ buffer = g_malloc(buffer_len);
+
+ qed_header_cpu_to_le(&new_header, &le_header);
+ memcpy(buffer, &le_header, sizeof(le_header));
+ buffer_len = sizeof(le_header);
+
+ if (backing_file) {
+ memcpy(buffer + buffer_len, backing_file, backing_file_len);
+ buffer_len += backing_file_len;
+ }
+
+ /* Write new header */
+ ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
+ g_free(buffer);
+ if (ret == 0) {
+ memcpy(&s->header, &new_header, sizeof(new_header));
+ }
+ return ret;
+}
+
+static void bdrv_qed_invalidate_cache(BlockDriverState *bs)
+{
+ BDRVQEDState *s = bs->opaque;
+
+ bdrv_qed_close(bs);
+ memset(s, 0, sizeof(BDRVQEDState));
+ bdrv_qed_open(bs, NULL, bs->open_flags);
+}
+
+static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
+ BdrvCheckMode fix)
+{
+ BDRVQEDState *s = bs->opaque;
+
+ return qed_check(s, result, !!fix);
+}
+
+static QEMUOptionParameter qed_create_options[] = {
+ {
+ .name = BLOCK_OPT_SIZE,
+ .type = OPT_SIZE,
+ .help = "Virtual disk size (in bytes)"
+ }, {
+ .name = BLOCK_OPT_BACKING_FILE,
+ .type = OPT_STRING,
+ .help = "File name of a base image"
+ }, {
+ .name = BLOCK_OPT_BACKING_FMT,
+ .type = OPT_STRING,
+ .help = "Image format of the base image"
+ }, {
+ .name = BLOCK_OPT_CLUSTER_SIZE,
+ .type = OPT_SIZE,
+ .help = "Cluster size (in bytes)",
+ .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
+ }, {
+ .name = BLOCK_OPT_TABLE_SIZE,
+ .type = OPT_SIZE,
+ .help = "L1/L2 table size (in clusters)"
+ },
+ { /* end of list */ }
+};
+
+static BlockDriver bdrv_qed = {
+ .format_name = "qed",
+ .instance_size = sizeof(BDRVQEDState),
+ .create_options = qed_create_options,
+
+ .bdrv_probe = bdrv_qed_probe,
+ .bdrv_rebind = bdrv_qed_rebind,
+ .bdrv_open = bdrv_qed_open,
+ .bdrv_close = bdrv_qed_close,
+ .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
+ .bdrv_create = bdrv_qed_create,
+ .bdrv_has_zero_init = bdrv_has_zero_init_1,
+ .bdrv_co_is_allocated = bdrv_qed_co_is_allocated,
+ .bdrv_make_empty = bdrv_qed_make_empty,
+ .bdrv_aio_readv = bdrv_qed_aio_readv,
+ .bdrv_aio_writev = bdrv_qed_aio_writev,
+ .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes,
+ .bdrv_truncate = bdrv_qed_truncate,
+ .bdrv_getlength = bdrv_qed_getlength,
+ .bdrv_get_info = bdrv_qed_get_info,
+ .bdrv_change_backing_file = bdrv_qed_change_backing_file,
+ .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
+ .bdrv_check = bdrv_qed_check,
+};
+
+static void bdrv_qed_init(void)
+{
+ bdrv_register(&bdrv_qed);
+}
+
+block_init(bdrv_qed_init);
diff --git a/contrib/qemu/block/qed.h b/contrib/qemu/block/qed.h
new file mode 100644
index 00000000000..2b4ddedf313
--- /dev/null
+++ b/contrib/qemu/block/qed.h
@@ -0,0 +1,344 @@
+/*
+ * QEMU Enhanced Disk Format
+ *
+ * Copyright IBM, Corp. 2010
+ *
+ * Authors:
+ * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU LGPL, version 2 or later.
+ * See the COPYING.LIB file in the top-level directory.
+ *
+ */
+
+#ifndef BLOCK_QED_H
+#define BLOCK_QED_H
+
+#include "block/block_int.h"
+
+/* The layout of a QED file is as follows:
+ *
+ * +--------+----------+----------+----------+-----+
+ * | header | L1 table | cluster0 | cluster1 | ... |
+ * +--------+----------+----------+----------+-----+
+ *
+ * There is a 2-level pagetable for cluster allocation:
+ *
+ * +----------+
+ * | L1 table |
+ * +----------+
+ * ,------' | '------.
+ * +----------+ | +----------+
+ * | L2 table | ... | L2 table |
+ * +----------+ +----------+
+ * ,------' | '------.
+ * +----------+ | +----------+
+ * | Data | ... | Data |
+ * +----------+ +----------+
+ *
+ * The L1 table is fixed size and always present. L2 tables are allocated on
+ * demand. The L1 table size determines the maximum possible image size; it
+ * can be influenced using the cluster_size and table_size values.
+ *
+ * All fields are little-endian on disk.
+ */
+
+enum {
+ QED_MAGIC = 'Q' | 'E' << 8 | 'D' << 16 | '\0' << 24,
+
+ /* The image supports a backing file */
+ QED_F_BACKING_FILE = 0x01,
+
+ /* The image needs a consistency check before use */
+ QED_F_NEED_CHECK = 0x02,
+
+ /* The backing file format must not be probed, treat as raw image */
+ QED_F_BACKING_FORMAT_NO_PROBE = 0x04,
+
+ /* Feature bits must be used when the on-disk format changes */
+ QED_FEATURE_MASK = QED_F_BACKING_FILE | /* supported feature bits */
+ QED_F_NEED_CHECK |
+ QED_F_BACKING_FORMAT_NO_PROBE,
+ QED_COMPAT_FEATURE_MASK = 0, /* supported compat feature bits */
+ QED_AUTOCLEAR_FEATURE_MASK = 0, /* supported autoclear feature bits */
+
+ /* Data is stored in groups of sectors called clusters. Cluster size must
+ * be large to avoid keeping too much metadata. I/O requests that have
+ * sub-cluster size will require read-modify-write.
+ */
+ QED_MIN_CLUSTER_SIZE = 4 * 1024, /* in bytes */
+ QED_MAX_CLUSTER_SIZE = 64 * 1024 * 1024,
+ QED_DEFAULT_CLUSTER_SIZE = 64 * 1024,
+
+ /* Allocated clusters are tracked using a 2-level pagetable. Table size is
+ * a multiple of clusters so large maximum image sizes can be supported
+ * without jacking up the cluster size too much.
+ */
+ QED_MIN_TABLE_SIZE = 1, /* in clusters */
+ QED_MAX_TABLE_SIZE = 16,
+ QED_DEFAULT_TABLE_SIZE = 4,
+
+ /* Delay to flush and clean image after last allocating write completes */
+ QED_NEED_CHECK_TIMEOUT = 5, /* in seconds */
+};
+
+typedef struct {
+ uint32_t magic; /* QED\0 */
+
+ uint32_t cluster_size; /* in bytes */
+ uint32_t table_size; /* for L1 and L2 tables, in clusters */
+ uint32_t header_size; /* in clusters */
+
+ uint64_t features; /* format feature bits */
+ uint64_t compat_features; /* compatible feature bits */
+ uint64_t autoclear_features; /* self-resetting feature bits */
+
+ uint64_t l1_table_offset; /* in bytes */
+ uint64_t image_size; /* total logical image size, in bytes */
+
+ /* if (features & QED_F_BACKING_FILE) */
+ uint32_t backing_filename_offset; /* in bytes from start of header */
+ uint32_t backing_filename_size; /* in bytes */
+} QEDHeader;
+
+typedef struct {
+ uint64_t offsets[0]; /* in bytes */
+} QEDTable;
+
+/* The L2 cache is a simple write-through cache for L2 structures */
+typedef struct CachedL2Table {
+ QEDTable *table;
+ uint64_t offset; /* offset=0 indicates an invalidate entry */
+ QTAILQ_ENTRY(CachedL2Table) node;
+ int ref;
+} CachedL2Table;
+
+typedef struct {
+ QTAILQ_HEAD(, CachedL2Table) entries;
+ unsigned int n_entries;
+} L2TableCache;
+
+typedef struct QEDRequest {
+ CachedL2Table *l2_table;
+} QEDRequest;
+
+enum {
+ QED_AIOCB_WRITE = 0x0001, /* read or write? */
+ QED_AIOCB_ZERO = 0x0002, /* zero write, used with QED_AIOCB_WRITE */
+};
+
+typedef struct QEDAIOCB {
+ BlockDriverAIOCB common;
+ QEMUBH *bh;
+ int bh_ret; /* final return status for completion bh */
+ QSIMPLEQ_ENTRY(QEDAIOCB) next; /* next request */
+ int flags; /* QED_AIOCB_* bits ORed together */
+ bool *finished; /* signal for cancel completion */
+ uint64_t end_pos; /* request end on block device, in bytes */
+
+ /* User scatter-gather list */
+ QEMUIOVector *qiov;
+ size_t qiov_offset; /* byte count already processed */
+
+ /* Current cluster scatter-gather list */
+ QEMUIOVector cur_qiov;
+ uint64_t cur_pos; /* position on block device, in bytes */
+ uint64_t cur_cluster; /* cluster offset in image file */
+ unsigned int cur_nclusters; /* number of clusters being accessed */
+ int find_cluster_ret; /* used for L1/L2 update */
+
+ QEDRequest request;
+} QEDAIOCB;
+
+typedef struct {
+ BlockDriverState *bs; /* device */
+ uint64_t file_size; /* length of image file, in bytes */
+
+ QEDHeader header; /* always cpu-endian */
+ QEDTable *l1_table;
+ L2TableCache l2_cache; /* l2 table cache */
+ uint32_t table_nelems;
+ uint32_t l1_shift;
+ uint32_t l2_shift;
+ uint32_t l2_mask;
+
+ /* Allocating write request queue */
+ QSIMPLEQ_HEAD(, QEDAIOCB) allocating_write_reqs;
+ bool allocating_write_reqs_plugged;
+
+ /* Periodic flush and clear need check flag */
+ QEMUTimer *need_check_timer;
+} BDRVQEDState;
+
+enum {
+ QED_CLUSTER_FOUND, /* cluster found */
+ QED_CLUSTER_ZERO, /* zero cluster found */
+ QED_CLUSTER_L2, /* cluster missing in L2 */
+ QED_CLUSTER_L1, /* cluster missing in L1 */
+};
+
+/**
+ * qed_find_cluster() completion callback
+ *
+ * @opaque: User data for completion callback
+ * @ret: QED_CLUSTER_FOUND Success
+ * QED_CLUSTER_L2 Data cluster unallocated in L2
+ * QED_CLUSTER_L1 L2 unallocated in L1
+ * -errno POSIX error occurred
+ * @offset: Data cluster offset
+ * @len: Contiguous bytes starting from cluster offset
+ *
+ * This function is invoked when qed_find_cluster() completes.
+ *
+ * On success ret is QED_CLUSTER_FOUND and offset/len are a contiguous range
+ * in the image file.
+ *
+ * On failure ret is QED_CLUSTER_L2 or QED_CLUSTER_L1 for missing L2 or L1
+ * table offset, respectively. len is number of contiguous unallocated bytes.
+ */
+typedef void QEDFindClusterFunc(void *opaque, int ret, uint64_t offset, size_t len);
+
+/**
+ * Generic callback for chaining async callbacks
+ */
+typedef struct {
+ BlockDriverCompletionFunc *cb;
+ void *opaque;
+} GenericCB;
+
+void *gencb_alloc(size_t len, BlockDriverCompletionFunc *cb, void *opaque);
+void gencb_complete(void *opaque, int ret);
+
+/**
+ * Header functions
+ */
+int qed_write_header_sync(BDRVQEDState *s);
+
+/**
+ * L2 cache functions
+ */
+void qed_init_l2_cache(L2TableCache *l2_cache);
+void qed_free_l2_cache(L2TableCache *l2_cache);
+CachedL2Table *qed_alloc_l2_cache_entry(L2TableCache *l2_cache);
+void qed_unref_l2_cache_entry(CachedL2Table *entry);
+CachedL2Table *qed_find_l2_cache_entry(L2TableCache *l2_cache, uint64_t offset);
+void qed_commit_l2_cache_entry(L2TableCache *l2_cache, CachedL2Table *l2_table);
+
+/**
+ * Table I/O functions
+ */
+int qed_read_l1_table_sync(BDRVQEDState *s);
+void qed_write_l1_table(BDRVQEDState *s, unsigned int index, unsigned int n,
+ BlockDriverCompletionFunc *cb, void *opaque);
+int qed_write_l1_table_sync(BDRVQEDState *s, unsigned int index,
+ unsigned int n);
+int qed_read_l2_table_sync(BDRVQEDState *s, QEDRequest *request,
+ uint64_t offset);
+void qed_read_l2_table(BDRVQEDState *s, QEDRequest *request, uint64_t offset,
+ BlockDriverCompletionFunc *cb, void *opaque);
+void qed_write_l2_table(BDRVQEDState *s, QEDRequest *request,
+ unsigned int index, unsigned int n, bool flush,
+ BlockDriverCompletionFunc *cb, void *opaque);
+int qed_write_l2_table_sync(BDRVQEDState *s, QEDRequest *request,
+ unsigned int index, unsigned int n, bool flush);
+
+/**
+ * Cluster functions
+ */
+void qed_find_cluster(BDRVQEDState *s, QEDRequest *request, uint64_t pos,
+ size_t len, QEDFindClusterFunc *cb, void *opaque);
+
+/**
+ * Consistency check
+ */
+int qed_check(BDRVQEDState *s, BdrvCheckResult *result, bool fix);
+
+QEDTable *qed_alloc_table(BDRVQEDState *s);
+
+/**
+ * Round down to the start of a cluster
+ */
+static inline uint64_t qed_start_of_cluster(BDRVQEDState *s, uint64_t offset)
+{
+ return offset & ~(uint64_t)(s->header.cluster_size - 1);
+}
+
+static inline uint64_t qed_offset_into_cluster(BDRVQEDState *s, uint64_t offset)
+{
+ return offset & (s->header.cluster_size - 1);
+}
+
+static inline uint64_t qed_bytes_to_clusters(BDRVQEDState *s, uint64_t bytes)
+{
+ return qed_start_of_cluster(s, bytes + (s->header.cluster_size - 1)) /
+ (s->header.cluster_size - 1);
+}
+
+static inline unsigned int qed_l1_index(BDRVQEDState *s, uint64_t pos)
+{
+ return pos >> s->l1_shift;
+}
+
+static inline unsigned int qed_l2_index(BDRVQEDState *s, uint64_t pos)
+{
+ return (pos >> s->l2_shift) & s->l2_mask;
+}
+
+/**
+ * Test if a cluster offset is valid
+ */
+static inline bool qed_check_cluster_offset(BDRVQEDState *s, uint64_t offset)
+{
+ uint64_t header_size = (uint64_t)s->header.header_size *
+ s->header.cluster_size;
+
+ if (offset & (s->header.cluster_size - 1)) {
+ return false;
+ }
+ return offset >= header_size && offset < s->file_size;
+}
+
+/**
+ * Test if a table offset is valid
+ */
+static inline bool qed_check_table_offset(BDRVQEDState *s, uint64_t offset)
+{
+ uint64_t end_offset = offset + (s->header.table_size - 1) *
+ s->header.cluster_size;
+
+ /* Overflow check */
+ if (end_offset <= offset) {
+ return false;
+ }
+
+ return qed_check_cluster_offset(s, offset) &&
+ qed_check_cluster_offset(s, end_offset);
+}
+
+static inline bool qed_offset_is_cluster_aligned(BDRVQEDState *s,
+ uint64_t offset)
+{
+ if (qed_offset_into_cluster(s, offset)) {
+ return false;
+ }
+ return true;
+}
+
+static inline bool qed_offset_is_unalloc_cluster(uint64_t offset)
+{
+ if (offset == 0) {
+ return true;
+ }
+ return false;
+}
+
+static inline bool qed_offset_is_zero_cluster(uint64_t offset)
+{
+ if (offset == 1) {
+ return true;
+ }
+ return false;
+}
+
+#endif /* BLOCK_QED_H */
diff --git a/contrib/qemu/block/snapshot.c b/contrib/qemu/block/snapshot.c
new file mode 100644
index 00000000000..6c6d9deea1f
--- /dev/null
+++ b/contrib/qemu/block/snapshot.c
@@ -0,0 +1,157 @@
+/*
+ * Block layer snapshot related functions
+ *
+ * Copyright (c) 2003-2008 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "block/snapshot.h"
+#include "block/block_int.h"
+
+int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
+ const char *name)
+{
+ QEMUSnapshotInfo *sn_tab, *sn;
+ int nb_sns, i, ret;
+
+ ret = -ENOENT;
+ nb_sns = bdrv_snapshot_list(bs, &sn_tab);
+ if (nb_sns < 0) {
+ return ret;
+ }
+ for (i = 0; i < nb_sns; i++) {
+ sn = &sn_tab[i];
+ if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
+ *sn_info = *sn;
+ ret = 0;
+ break;
+ }
+ }
+ g_free(sn_tab);
+ return ret;
+}
+
+int bdrv_can_snapshot(BlockDriverState *bs)
+{
+ BlockDriver *drv = bs->drv;
+ if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
+ return 0;
+ }
+
+ if (!drv->bdrv_snapshot_create) {
+ if (bs->file != NULL) {
+ return bdrv_can_snapshot(bs->file);
+ }
+ return 0;
+ }
+
+ return 1;
+}
+
+int bdrv_snapshot_create(BlockDriverState *bs,
+ QEMUSnapshotInfo *sn_info)
+{
+ BlockDriver *drv = bs->drv;
+ if (!drv) {
+ return -ENOMEDIUM;
+ }
+ if (drv->bdrv_snapshot_create) {
+ return drv->bdrv_snapshot_create(bs, sn_info);
+ }
+ if (bs->file) {
+ return bdrv_snapshot_create(bs->file, sn_info);
+ }
+ return -ENOTSUP;
+}
+
+int bdrv_snapshot_goto(BlockDriverState *bs,
+ const char *snapshot_id)
+{
+ BlockDriver *drv = bs->drv;
+ int ret, open_ret;
+
+ if (!drv) {
+ return -ENOMEDIUM;
+ }
+ if (drv->bdrv_snapshot_goto) {
+ return drv->bdrv_snapshot_goto(bs, snapshot_id);
+ }
+
+ if (bs->file) {
+ drv->bdrv_close(bs);
+ ret = bdrv_snapshot_goto(bs->file, snapshot_id);
+ open_ret = drv->bdrv_open(bs, NULL, bs->open_flags);
+ if (open_ret < 0) {
+ bdrv_delete(bs->file);
+ bs->drv = NULL;
+ return open_ret;
+ }
+ return ret;
+ }
+
+ return -ENOTSUP;
+}
+
+int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
+{
+ BlockDriver *drv = bs->drv;
+ if (!drv) {
+ return -ENOMEDIUM;
+ }
+ if (drv->bdrv_snapshot_delete) {
+ return drv->bdrv_snapshot_delete(bs, snapshot_id);
+ }
+ if (bs->file) {
+ return bdrv_snapshot_delete(bs->file, snapshot_id);
+ }
+ return -ENOTSUP;
+}
+
+int bdrv_snapshot_list(BlockDriverState *bs,
+ QEMUSnapshotInfo **psn_info)
+{
+ BlockDriver *drv = bs->drv;
+ if (!drv) {
+ return -ENOMEDIUM;
+ }
+ if (drv->bdrv_snapshot_list) {
+ return drv->bdrv_snapshot_list(bs, psn_info);
+ }
+ if (bs->file) {
+ return bdrv_snapshot_list(bs->file, psn_info);
+ }
+ return -ENOTSUP;
+}
+
+int bdrv_snapshot_load_tmp(BlockDriverState *bs,
+ const char *snapshot_name)
+{
+ BlockDriver *drv = bs->drv;
+ if (!drv) {
+ return -ENOMEDIUM;
+ }
+ if (!bs->read_only) {
+ return -EINVAL;
+ }
+ if (drv->bdrv_snapshot_load_tmp) {
+ return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
+ }
+ return -ENOTSUP;
+}
diff --git a/contrib/qemu/config-host.h b/contrib/qemu/config-host.h
new file mode 100644
index 00000000000..874b04053bc
--- /dev/null
+++ b/contrib/qemu/config-host.h
@@ -0,0 +1,74 @@
+/* Automatically generated by create_config - do not modify */
+#define CONFIG_QEMU_CONFDIR "/usr/local/etc/qemu"
+#define CONFIG_QEMU_DATADIR "/usr/local/share/qemu"
+#define CONFIG_QEMU_DOCDIR "/usr/local/share/doc/qemu"
+#define CONFIG_QEMU_LOCALSTATEDIR "/usr/local/var"
+#define CONFIG_QEMU_HELPERDIR "/usr/local/libexec"
+#define CONFIG_QEMU_LOCALEDIR "/usr/local/share/locale"
+#define HOST_X86_64 1
+#define CONFIG_QEMU_LDST_OPTIMIZATION 1
+#define CONFIG_POSIX 1
+#define CONFIG_LINUX 1
+#define CONFIG_SLIRP 1
+#define CONFIG_SMBD_COMMAND "/usr/sbin/smbd"
+#define CONFIG_AUDIO_DRIVERS \
+ &oss_audio_driver,\
+
+#define CONFIG_OSS 1
+#define CONFIG_BDRV_RW_WHITELIST\
+ NULL
+#define CONFIG_BDRV_RO_WHITELIST\
+ NULL
+#define CONFIG_VNC 1
+#define CONFIG_VNC_TLS 1
+#define CONFIG_VNC_SASL 1
+#define CONFIG_VNC_WS 1
+#define CONFIG_FNMATCH 1
+#define CONFIG_UUID 1
+#define CONFIG_XFS 1
+#define QEMU_VERSION "1.5.50"
+#define QEMU_PKGVERSION ""
+#define CONFIG_CURSES 1
+#define CONFIG_UTIMENSAT 1
+#define CONFIG_PIPE2 1
+#define CONFIG_ACCEPT4 1
+#define CONFIG_SPLICE 1
+#define CONFIG_EVENTFD 1
+#define CONFIG_FALLOCATE 1
+#define CONFIG_FALLOCATE_PUNCH_HOLE 1
+#define CONFIG_SYNC_FILE_RANGE 1
+#define CONFIG_FIEMAP 1
+#define CONFIG_DUP3 1
+#define CONFIG_EPOLL 1
+#define CONFIG_EPOLL_CREATE1 1
+#define CONFIG_EPOLL_PWAIT 1
+#define CONFIG_SENDFILE 1
+#define CONFIG_INOTIFY 1
+#define CONFIG_INOTIFY1 1
+#define CONFIG_BYTESWAP_H 1
+#define CONFIG_CURL 1
+#define CONFIG_LINUX_AIO 1
+#define CONFIG_ATTR 1
+#define CONFIG_VHOST_SCSI 1
+#define CONFIG_IOVEC 1
+#define CONFIG_PREADV 1
+#define CONFIG_FDT 1
+#define CONFIG_SIGNALFD 1
+#define CONFIG_FDATASYNC 1
+#define CONFIG_MADVISE 1
+#define CONFIG_POSIX_MADVISE 1
+#define CONFIG_SIGEV_THREAD_ID 1
+#define CONFIG_UNAME_RELEASE ""
+#define CONFIG_QOM_CAST_DEBUG 1
+#define CONFIG_COROUTINE_BACKEND ucontext
+#define CONFIG_OPEN_BY_HANDLE 1
+#define CONFIG_LINUX_MAGIC_H 1
+#define CONFIG_PRAGMA_DIAGNOSTIC_AVAILABLE 1
+#define CONFIG_VALGRIND_H 1
+#define CONFIG_HAS_ENVIRON 1
+#define CONFIG_CPUID_H 1
+#define CONFIG_INT128 1
+#define CONFIG_VIRTIO_BLK_DATA_PLANE $(CONFIG_VIRTIO)
+#define CONFIG_TRACE_NOP 1
+#define CONFIG_TRACE_FILE trace
+#define CONFIG_TRACE_DEFAULT 1
diff --git a/contrib/qemu/include/block/aio.h b/contrib/qemu/include/block/aio.h
new file mode 100644
index 00000000000..183679374fa
--- /dev/null
+++ b/contrib/qemu/include/block/aio.h
@@ -0,0 +1,247 @@
+/*
+ * QEMU aio implementation
+ *
+ * Copyright IBM, Corp. 2008
+ *
+ * Authors:
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#ifndef QEMU_AIO_H
+#define QEMU_AIO_H
+
+#include "qemu-common.h"
+#include "qemu/queue.h"
+#include "qemu/event_notifier.h"
+
+typedef struct BlockDriverAIOCB BlockDriverAIOCB;
+typedef void BlockDriverCompletionFunc(void *opaque, int ret);
+
+typedef struct AIOCBInfo {
+ void (*cancel)(BlockDriverAIOCB *acb);
+ size_t aiocb_size;
+} AIOCBInfo;
+
+struct BlockDriverAIOCB {
+ const AIOCBInfo *aiocb_info;
+ BlockDriverState *bs;
+ BlockDriverCompletionFunc *cb;
+ void *opaque;
+};
+
+void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
+ BlockDriverCompletionFunc *cb, void *opaque);
+void qemu_aio_release(void *p);
+
+typedef struct AioHandler AioHandler;
+typedef void QEMUBHFunc(void *opaque);
+typedef void IOHandler(void *opaque);
+
+typedef struct AioContext {
+ GSource source;
+
+ /* The list of registered AIO handlers */
+ QLIST_HEAD(, AioHandler) aio_handlers;
+
+ /* This is a simple lock used to protect the aio_handlers list.
+ * Specifically, it's used to ensure that no callbacks are removed while
+ * we're walking and dispatching callbacks.
+ */
+ int walking_handlers;
+
+ /* Anchor of the list of Bottom Halves belonging to the context */
+ struct QEMUBH *first_bh;
+
+ /* A simple lock used to protect the first_bh list, and ensure that
+ * no callbacks are removed while we're walking and dispatching callbacks.
+ */
+ int walking_bh;
+
+ /* Used for aio_notify. */
+ EventNotifier notifier;
+
+ /* GPollFDs for aio_poll() */
+ GArray *pollfds;
+
+ /* Thread pool for performing work and receiving completion callbacks */
+ struct ThreadPool *thread_pool;
+} AioContext;
+
+/* Returns 1 if there are still outstanding AIO requests; 0 otherwise */
+typedef int (AioFlushEventNotifierHandler)(EventNotifier *e);
+
+/**
+ * aio_context_new: Allocate a new AioContext.
+ *
+ * AioContext provide a mini event-loop that can be waited on synchronously.
+ * They also provide bottom halves, a service to execute a piece of code
+ * as soon as possible.
+ */
+AioContext *aio_context_new(void);
+
+/**
+ * aio_context_ref:
+ * @ctx: The AioContext to operate on.
+ *
+ * Add a reference to an AioContext.
+ */
+void aio_context_ref(AioContext *ctx);
+
+/**
+ * aio_context_unref:
+ * @ctx: The AioContext to operate on.
+ *
+ * Drop a reference to an AioContext.
+ */
+void aio_context_unref(AioContext *ctx);
+
+/**
+ * aio_bh_new: Allocate a new bottom half structure.
+ *
+ * Bottom halves are lightweight callbacks whose invocation is guaranteed
+ * to be wait-free, thread-safe and signal-safe. The #QEMUBH structure
+ * is opaque and must be allocated prior to its use.
+ */
+QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque);
+
+/**
+ * aio_notify: Force processing of pending events.
+ *
+ * Similar to signaling a condition variable, aio_notify forces
+ * aio_wait to exit, so that the next call will re-examine pending events.
+ * The caller of aio_notify will usually call aio_wait again very soon,
+ * or go through another iteration of the GLib main loop. Hence, aio_notify
+ * also has the side effect of recalculating the sets of file descriptors
+ * that the main loop waits for.
+ *
+ * Calling aio_notify is rarely necessary, because for example scheduling
+ * a bottom half calls it already.
+ */
+void aio_notify(AioContext *ctx);
+
+/**
+ * aio_bh_poll: Poll bottom halves for an AioContext.
+ *
+ * These are internal functions used by the QEMU main loop.
+ */
+int aio_bh_poll(AioContext *ctx);
+
+/**
+ * qemu_bh_schedule: Schedule a bottom half.
+ *
+ * Scheduling a bottom half interrupts the main loop and causes the
+ * execution of the callback that was passed to qemu_bh_new.
+ *
+ * Bottom halves that are scheduled from a bottom half handler are instantly
+ * invoked. This can create an infinite loop if a bottom half handler
+ * schedules itself.
+ *
+ * @bh: The bottom half to be scheduled.
+ */
+void qemu_bh_schedule(QEMUBH *bh);
+
+/**
+ * qemu_bh_cancel: Cancel execution of a bottom half.
+ *
+ * Canceling execution of a bottom half undoes the effect of calls to
+ * qemu_bh_schedule without freeing its resources yet. While cancellation
+ * itself is also wait-free and thread-safe, it can of course race with the
+ * loop that executes bottom halves unless you are holding the iothread
+ * mutex. This makes it mostly useless if you are not holding the mutex.
+ *
+ * @bh: The bottom half to be canceled.
+ */
+void qemu_bh_cancel(QEMUBH *bh);
+
+/**
+ *qemu_bh_delete: Cancel execution of a bottom half and free its resources.
+ *
+ * Deleting a bottom half frees the memory that was allocated for it by
+ * qemu_bh_new. It also implies canceling the bottom half if it was
+ * scheduled.
+ *
+ * @bh: The bottom half to be deleted.
+ */
+void qemu_bh_delete(QEMUBH *bh);
+
+/* Return whether there are any pending callbacks from the GSource
+ * attached to the AioContext.
+ *
+ * This is used internally in the implementation of the GSource.
+ */
+bool aio_pending(AioContext *ctx);
+
+/* Progress in completing AIO work to occur. This can issue new pending
+ * aio as a result of executing I/O completion or bh callbacks.
+ *
+ * If there is no pending AIO operation or completion (bottom half),
+ * return false. If there are pending AIO operations of bottom halves,
+ * return true.
+ *
+ * If there are no pending bottom halves, but there are pending AIO
+ * operations, it may not be possible to make any progress without
+ * blocking. If @blocking is true, this function will wait until one
+ * or more AIO events have completed, to ensure something has moved
+ * before returning.
+ */
+bool aio_poll(AioContext *ctx, bool blocking);
+
+#ifdef CONFIG_POSIX
+/* Returns 1 if there are still outstanding AIO requests; 0 otherwise */
+typedef int (AioFlushHandler)(void *opaque);
+
+/* Register a file descriptor and associated callbacks. Behaves very similarly
+ * to qemu_set_fd_handler2. Unlike qemu_set_fd_handler2, these callbacks will
+ * be invoked when using qemu_aio_wait().
+ *
+ * Code that invokes AIO completion functions should rely on this function
+ * instead of qemu_set_fd_handler[2].
+ */
+void aio_set_fd_handler(AioContext *ctx,
+ int fd,
+ IOHandler *io_read,
+ IOHandler *io_write,
+ AioFlushHandler *io_flush,
+ void *opaque);
+#endif
+
+/* Register an event notifier and associated callbacks. Behaves very similarly
+ * to event_notifier_set_handler. Unlike event_notifier_set_handler, these callbacks
+ * will be invoked when using qemu_aio_wait().
+ *
+ * Code that invokes AIO completion functions should rely on this function
+ * instead of event_notifier_set_handler.
+ */
+void aio_set_event_notifier(AioContext *ctx,
+ EventNotifier *notifier,
+ EventNotifierHandler *io_read,
+ AioFlushEventNotifierHandler *io_flush);
+
+/* Return a GSource that lets the main loop poll the file descriptors attached
+ * to this AioContext.
+ */
+GSource *aio_get_g_source(AioContext *ctx);
+
+/* Return the ThreadPool bound to this AioContext */
+struct ThreadPool *aio_get_thread_pool(AioContext *ctx);
+
+/* Functions to operate on the main QEMU AioContext. */
+
+bool qemu_aio_wait(void);
+void qemu_aio_set_event_notifier(EventNotifier *notifier,
+ EventNotifierHandler *io_read,
+ AioFlushEventNotifierHandler *io_flush);
+
+#ifdef CONFIG_POSIX
+void qemu_aio_set_fd_handler(int fd,
+ IOHandler *io_read,
+ IOHandler *io_write,
+ AioFlushHandler *io_flush,
+ void *opaque);
+#endif
+
+#endif
diff --git a/contrib/qemu/include/block/block.h b/contrib/qemu/include/block/block.h
new file mode 100644
index 00000000000..b6b9014a9ce
--- /dev/null
+++ b/contrib/qemu/include/block/block.h
@@ -0,0 +1,443 @@
+#ifndef BLOCK_H
+#define BLOCK_H
+
+#include "block/aio.h"
+#include "qemu-common.h"
+#include "qemu/option.h"
+#include "block/coroutine.h"
+#include "qapi/qmp/qobject.h"
+#include "qapi-types.h"
+
+/* block.c */
+typedef struct BlockDriver BlockDriver;
+typedef struct BlockJob BlockJob;
+
+typedef struct BlockDriverInfo {
+ /* in bytes, 0 if irrelevant */
+ int cluster_size;
+ /* offset at which the VM state can be saved (0 if not possible) */
+ int64_t vm_state_offset;
+ bool is_dirty;
+} BlockDriverInfo;
+
+typedef struct BlockFragInfo {
+ uint64_t allocated_clusters;
+ uint64_t total_clusters;
+ uint64_t fragmented_clusters;
+ uint64_t compressed_clusters;
+} BlockFragInfo;
+
+/* Callbacks for block device models */
+typedef struct BlockDevOps {
+ /*
+ * Runs when virtual media changed (monitor commands eject, change)
+ * Argument load is true on load and false on eject.
+ * Beware: doesn't run when a host device's physical media
+ * changes. Sure would be useful if it did.
+ * Device models with removable media must implement this callback.
+ */
+ void (*change_media_cb)(void *opaque, bool load);
+ /*
+ * Runs when an eject request is issued from the monitor, the tray
+ * is closed, and the medium is locked.
+ * Device models that do not implement is_medium_locked will not need
+ * this callback. Device models that can lock the medium or tray might
+ * want to implement the callback and unlock the tray when "force" is
+ * true, even if they do not support eject requests.
+ */
+ void (*eject_request_cb)(void *opaque, bool force);
+ /*
+ * Is the virtual tray open?
+ * Device models implement this only when the device has a tray.
+ */
+ bool (*is_tray_open)(void *opaque);
+ /*
+ * Is the virtual medium locked into the device?
+ * Device models implement this only when device has such a lock.
+ */
+ bool (*is_medium_locked)(void *opaque);
+ /*
+ * Runs when the size changed (e.g. monitor command block_resize)
+ */
+ void (*resize_cb)(void *opaque);
+} BlockDevOps;
+
+#define BDRV_O_RDWR 0x0002
+#define BDRV_O_SNAPSHOT 0x0008 /* open the file read only and save writes in a snapshot */
+#define BDRV_O_NOCACHE 0x0020 /* do not use the host page cache */
+#define BDRV_O_CACHE_WB 0x0040 /* use write-back caching */
+#define BDRV_O_NATIVE_AIO 0x0080 /* use native AIO instead of the thread pool */
+#define BDRV_O_NO_BACKING 0x0100 /* don't open the backing file */
+#define BDRV_O_NO_FLUSH 0x0200 /* disable flushing on this disk */
+#define BDRV_O_COPY_ON_READ 0x0400 /* copy read backing sectors into image */
+#define BDRV_O_INCOMING 0x0800 /* consistency hint for incoming migration */
+#define BDRV_O_CHECK 0x1000 /* open solely for consistency check */
+#define BDRV_O_ALLOW_RDWR 0x2000 /* allow reopen to change from r/o to r/w */
+#define BDRV_O_UNMAP 0x4000 /* execute guest UNMAP/TRIM operations */
+
+#define BDRV_O_CACHE_MASK (BDRV_O_NOCACHE | BDRV_O_CACHE_WB | BDRV_O_NO_FLUSH)
+
+#define BDRV_SECTOR_BITS 9
+#define BDRV_SECTOR_SIZE (1ULL << BDRV_SECTOR_BITS)
+#define BDRV_SECTOR_MASK ~(BDRV_SECTOR_SIZE - 1)
+
+typedef enum {
+ BDRV_ACTION_REPORT, BDRV_ACTION_IGNORE, BDRV_ACTION_STOP
+} BlockErrorAction;
+
+typedef QSIMPLEQ_HEAD(BlockReopenQueue, BlockReopenQueueEntry) BlockReopenQueue;
+
+typedef struct BDRVReopenState {
+ BlockDriverState *bs;
+ int flags;
+ void *opaque;
+} BDRVReopenState;
+
+
+void bdrv_iostatus_enable(BlockDriverState *bs);
+void bdrv_iostatus_reset(BlockDriverState *bs);
+void bdrv_iostatus_disable(BlockDriverState *bs);
+bool bdrv_iostatus_is_enabled(const BlockDriverState *bs);
+void bdrv_iostatus_set_err(BlockDriverState *bs, int error);
+void bdrv_info_print(Monitor *mon, const QObject *data);
+void bdrv_info(Monitor *mon, QObject **ret_data);
+void bdrv_stats_print(Monitor *mon, const QObject *data);
+void bdrv_info_stats(Monitor *mon, QObject **ret_data);
+
+/* disk I/O throttling */
+void bdrv_io_limits_enable(BlockDriverState *bs);
+void bdrv_io_limits_disable(BlockDriverState *bs);
+bool bdrv_io_limits_enabled(BlockDriverState *bs);
+
+void bdrv_init(void);
+void bdrv_init_with_whitelist(void);
+BlockDriver *bdrv_find_protocol(const char *filename,
+ bool allow_protocol_prefix);
+BlockDriver *bdrv_find_format(const char *format_name);
+BlockDriver *bdrv_find_whitelisted_format(const char *format_name,
+ bool readonly);
+int bdrv_create(BlockDriver *drv, const char* filename,
+ QEMUOptionParameter *options);
+int bdrv_create_file(const char* filename, QEMUOptionParameter *options);
+BlockDriverState *bdrv_new(const char *device_name);
+void bdrv_make_anon(BlockDriverState *bs);
+void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old);
+void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top);
+void bdrv_delete(BlockDriverState *bs);
+int bdrv_parse_cache_flags(const char *mode, int *flags);
+int bdrv_parse_discard_flags(const char *mode, int *flags);
+int bdrv_file_open(BlockDriverState **pbs, const char *filename,
+ QDict *options, int flags);
+int bdrv_open_backing_file(BlockDriverState *bs, QDict *options);
+int bdrv_open(BlockDriverState *bs, const char *filename, QDict *options,
+ int flags, BlockDriver *drv);
+BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
+ BlockDriverState *bs, int flags);
+int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp);
+int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp);
+int bdrv_reopen_prepare(BDRVReopenState *reopen_state,
+ BlockReopenQueue *queue, Error **errp);
+void bdrv_reopen_commit(BDRVReopenState *reopen_state);
+void bdrv_reopen_abort(BDRVReopenState *reopen_state);
+void bdrv_close(BlockDriverState *bs);
+void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify);
+int bdrv_attach_dev(BlockDriverState *bs, void *dev);
+void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev);
+void bdrv_detach_dev(BlockDriverState *bs, void *dev);
+void *bdrv_get_attached_dev(BlockDriverState *bs);
+void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
+ void *opaque);
+void bdrv_dev_eject_request(BlockDriverState *bs, bool force);
+bool bdrv_dev_has_removable_media(BlockDriverState *bs);
+bool bdrv_dev_is_tray_open(BlockDriverState *bs);
+bool bdrv_dev_is_medium_locked(BlockDriverState *bs);
+int bdrv_read(BlockDriverState *bs, int64_t sector_num,
+ uint8_t *buf, int nb_sectors);
+int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
+ uint8_t *buf, int nb_sectors);
+int bdrv_write(BlockDriverState *bs, int64_t sector_num,
+ const uint8_t *buf, int nb_sectors);
+int bdrv_writev(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov);
+int bdrv_pread(BlockDriverState *bs, int64_t offset,
+ void *buf, int count);
+int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
+ const void *buf, int count);
+int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov);
+int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
+ const void *buf, int count);
+int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, QEMUIOVector *qiov);
+int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, QEMUIOVector *qiov);
+int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, QEMUIOVector *qiov);
+/*
+ * Efficiently zero a region of the disk image. Note that this is a regular
+ * I/O request like read or write and should have a reasonable size. This
+ * function is not suitable for zeroing the entire image in a single request
+ * because it may allocate memory for the entire region.
+ */
+int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors);
+int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, int *pnum);
+int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
+ BlockDriverState *base,
+ int64_t sector_num,
+ int nb_sectors, int *pnum);
+BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
+ const char *backing_file);
+int bdrv_get_backing_file_depth(BlockDriverState *bs);
+int bdrv_truncate(BlockDriverState *bs, int64_t offset);
+int64_t bdrv_getlength(BlockDriverState *bs);
+int64_t bdrv_get_allocated_file_size(BlockDriverState *bs);
+void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr);
+int bdrv_commit(BlockDriverState *bs);
+int bdrv_commit_all(void);
+int bdrv_change_backing_file(BlockDriverState *bs,
+ const char *backing_file, const char *backing_fmt);
+void bdrv_register(BlockDriver *bdrv);
+int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
+ BlockDriverState *base);
+BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
+ BlockDriverState *bs);
+BlockDriverState *bdrv_find_base(BlockDriverState *bs);
+
+
+typedef struct BdrvCheckResult {
+ int corruptions;
+ int leaks;
+ int check_errors;
+ int corruptions_fixed;
+ int leaks_fixed;
+ int64_t image_end_offset;
+ BlockFragInfo bfi;
+} BdrvCheckResult;
+
+typedef enum {
+ BDRV_FIX_LEAKS = 1,
+ BDRV_FIX_ERRORS = 2,
+} BdrvCheckMode;
+
+int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix);
+
+/* async block I/O */
+typedef void BlockDriverDirtyHandler(BlockDriverState *bs, int64_t sector,
+ int sector_num);
+BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
+ QEMUIOVector *iov, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque);
+BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
+ QEMUIOVector *iov, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque);
+BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
+ BlockDriverCompletionFunc *cb, void *opaque);
+BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque);
+void bdrv_aio_cancel(BlockDriverAIOCB *acb);
+
+typedef struct BlockRequest {
+ /* Fields to be filled by multiwrite caller */
+ int64_t sector;
+ int nb_sectors;
+ QEMUIOVector *qiov;
+ BlockDriverCompletionFunc *cb;
+ void *opaque;
+
+ /* Filled by multiwrite implementation */
+ int error;
+} BlockRequest;
+
+int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs,
+ int num_reqs);
+
+/* sg packet commands */
+int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf);
+BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
+ unsigned long int req, void *buf,
+ BlockDriverCompletionFunc *cb, void *opaque);
+
+/* Invalidate any cached metadata used by image formats */
+void bdrv_invalidate_cache(BlockDriverState *bs);
+void bdrv_invalidate_cache_all(void);
+
+void bdrv_clear_incoming_migration_all(void);
+
+/* Ensure contents are flushed to disk. */
+int bdrv_flush(BlockDriverState *bs);
+int coroutine_fn bdrv_co_flush(BlockDriverState *bs);
+int bdrv_flush_all(void);
+void bdrv_close_all(void);
+void bdrv_drain_all(void);
+
+int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors);
+int bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors);
+int bdrv_has_zero_init_1(BlockDriverState *bs);
+int bdrv_has_zero_init(BlockDriverState *bs);
+int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
+ int *pnum);
+int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base,
+ int64_t sector_num, int nb_sectors, int *pnum);
+
+void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
+ BlockdevOnError on_write_error);
+BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read);
+BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error);
+void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
+ bool is_read, int error);
+int bdrv_is_read_only(BlockDriverState *bs);
+int bdrv_is_sg(BlockDriverState *bs);
+int bdrv_enable_write_cache(BlockDriverState *bs);
+void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce);
+int bdrv_is_inserted(BlockDriverState *bs);
+int bdrv_media_changed(BlockDriverState *bs);
+void bdrv_lock_medium(BlockDriverState *bs, bool locked);
+void bdrv_eject(BlockDriverState *bs, bool eject_flag);
+const char *bdrv_get_format_name(BlockDriverState *bs);
+BlockDriverState *bdrv_find(const char *name);
+BlockDriverState *bdrv_next(BlockDriverState *bs);
+void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs),
+ void *opaque);
+int bdrv_is_encrypted(BlockDriverState *bs);
+int bdrv_key_required(BlockDriverState *bs);
+int bdrv_set_key(BlockDriverState *bs, const char *key);
+int bdrv_query_missing_keys(void);
+void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
+ void *opaque);
+const char *bdrv_get_device_name(BlockDriverState *bs);
+int bdrv_get_flags(BlockDriverState *bs);
+int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
+ const uint8_t *buf, int nb_sectors);
+int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi);
+void bdrv_round_to_clusters(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors,
+ int64_t *cluster_sector_num,
+ int *cluster_nb_sectors);
+
+const char *bdrv_get_encrypted_filename(BlockDriverState *bs);
+void bdrv_get_backing_filename(BlockDriverState *bs,
+ char *filename, int filename_size);
+void bdrv_get_full_backing_filename(BlockDriverState *bs,
+ char *dest, size_t sz);
+int bdrv_is_snapshot(BlockDriverState *bs);
+
+int path_is_absolute(const char *path);
+void path_combine(char *dest, int dest_size,
+ const char *base_path,
+ const char *filename);
+
+int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos);
+int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
+ int64_t pos, int size);
+
+int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
+ int64_t pos, int size);
+
+void bdrv_img_create(const char *filename, const char *fmt,
+ const char *base_filename, const char *base_fmt,
+ char *options, uint64_t img_size, int flags,
+ Error **errp, bool quiet);
+
+void bdrv_set_buffer_alignment(BlockDriverState *bs, int align);
+void *qemu_blockalign(BlockDriverState *bs, size_t size);
+bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov);
+
+struct HBitmapIter;
+void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity);
+int bdrv_get_dirty(BlockDriverState *bs, int64_t sector);
+void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, int nr_sectors);
+void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, int nr_sectors);
+void bdrv_dirty_iter_init(BlockDriverState *bs, struct HBitmapIter *hbi);
+int64_t bdrv_get_dirty_count(BlockDriverState *bs);
+
+void bdrv_enable_copy_on_read(BlockDriverState *bs);
+void bdrv_disable_copy_on_read(BlockDriverState *bs);
+
+void bdrv_set_in_use(BlockDriverState *bs, int in_use);
+int bdrv_in_use(BlockDriverState *bs);
+
+#ifdef CONFIG_LINUX_AIO
+int raw_get_aio_fd(BlockDriverState *bs);
+#else
+static inline int raw_get_aio_fd(BlockDriverState *bs)
+{
+ return -ENOTSUP;
+}
+#endif
+
+enum BlockAcctType {
+ BDRV_ACCT_READ,
+ BDRV_ACCT_WRITE,
+ BDRV_ACCT_FLUSH,
+ BDRV_MAX_IOTYPE,
+};
+
+typedef struct BlockAcctCookie {
+ int64_t bytes;
+ int64_t start_time_ns;
+ enum BlockAcctType type;
+} BlockAcctCookie;
+
+void bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie,
+ int64_t bytes, enum BlockAcctType type);
+void bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie);
+
+typedef enum {
+ BLKDBG_L1_UPDATE,
+
+ BLKDBG_L1_GROW_ALLOC_TABLE,
+ BLKDBG_L1_GROW_WRITE_TABLE,
+ BLKDBG_L1_GROW_ACTIVATE_TABLE,
+
+ BLKDBG_L2_LOAD,
+ BLKDBG_L2_UPDATE,
+ BLKDBG_L2_UPDATE_COMPRESSED,
+ BLKDBG_L2_ALLOC_COW_READ,
+ BLKDBG_L2_ALLOC_WRITE,
+
+ BLKDBG_READ_AIO,
+ BLKDBG_READ_BACKING_AIO,
+ BLKDBG_READ_COMPRESSED,
+
+ BLKDBG_WRITE_AIO,
+ BLKDBG_WRITE_COMPRESSED,
+
+ BLKDBG_VMSTATE_LOAD,
+ BLKDBG_VMSTATE_SAVE,
+
+ BLKDBG_COW_READ,
+ BLKDBG_COW_WRITE,
+
+ BLKDBG_REFTABLE_LOAD,
+ BLKDBG_REFTABLE_GROW,
+
+ BLKDBG_REFBLOCK_LOAD,
+ BLKDBG_REFBLOCK_UPDATE,
+ BLKDBG_REFBLOCK_UPDATE_PART,
+ BLKDBG_REFBLOCK_ALLOC,
+ BLKDBG_REFBLOCK_ALLOC_HOOKUP,
+ BLKDBG_REFBLOCK_ALLOC_WRITE,
+ BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS,
+ BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE,
+ BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE,
+
+ BLKDBG_CLUSTER_ALLOC,
+ BLKDBG_CLUSTER_ALLOC_BYTES,
+ BLKDBG_CLUSTER_FREE,
+
+ BLKDBG_FLUSH_TO_OS,
+ BLKDBG_FLUSH_TO_DISK,
+
+ BLKDBG_EVENT_MAX,
+} BlkDebugEvent;
+
+#define BLKDBG_EVENT(bs, evt) bdrv_debug_event(bs, evt)
+void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event);
+
+int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
+ const char *tag);
+int bdrv_debug_resume(BlockDriverState *bs, const char *tag);
+bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag);
+
+#endif
diff --git a/contrib/qemu/include/block/block_int.h b/contrib/qemu/include/block/block_int.h
new file mode 100644
index 00000000000..c6ac871e210
--- /dev/null
+++ b/contrib/qemu/include/block/block_int.h
@@ -0,0 +1,421 @@
+/*
+ * QEMU System Emulator block driver
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#ifndef BLOCK_INT_H
+#define BLOCK_INT_H
+
+#include "block/block.h"
+#include "qemu/option.h"
+#include "qemu/queue.h"
+#include "block/coroutine.h"
+#include "qemu/timer.h"
+#include "qapi-types.h"
+#include "qapi/qmp/qerror.h"
+#include "monitor/monitor.h"
+#include "qemu/hbitmap.h"
+#include "block/snapshot.h"
+
+#define BLOCK_FLAG_ENCRYPT 1
+#define BLOCK_FLAG_COMPAT6 4
+#define BLOCK_FLAG_LAZY_REFCOUNTS 8
+
+#define BLOCK_IO_LIMIT_READ 0
+#define BLOCK_IO_LIMIT_WRITE 1
+#define BLOCK_IO_LIMIT_TOTAL 2
+
+#define BLOCK_IO_SLICE_TIME 100000000
+#define NANOSECONDS_PER_SECOND 1000000000.0
+
+#define BLOCK_OPT_SIZE "size"
+#define BLOCK_OPT_ENCRYPT "encryption"
+#define BLOCK_OPT_COMPAT6 "compat6"
+#define BLOCK_OPT_BACKING_FILE "backing_file"
+#define BLOCK_OPT_BACKING_FMT "backing_fmt"
+#define BLOCK_OPT_CLUSTER_SIZE "cluster_size"
+#define BLOCK_OPT_TABLE_SIZE "table_size"
+#define BLOCK_OPT_PREALLOC "preallocation"
+#define BLOCK_OPT_SUBFMT "subformat"
+#define BLOCK_OPT_COMPAT_LEVEL "compat"
+#define BLOCK_OPT_LAZY_REFCOUNTS "lazy_refcounts"
+#define BLOCK_OPT_ADAPTER_TYPE "adapter_type"
+
+typedef struct BdrvTrackedRequest {
+ BlockDriverState *bs;
+ int64_t sector_num;
+ int nb_sectors;
+ bool is_write;
+ QLIST_ENTRY(BdrvTrackedRequest) list;
+ Coroutine *co; /* owner, used for deadlock detection */
+ CoQueue wait_queue; /* coroutines blocked on this request */
+} BdrvTrackedRequest;
+
+
+typedef struct BlockIOLimit {
+ int64_t bps[3];
+ int64_t iops[3];
+} BlockIOLimit;
+
+typedef struct BlockIOBaseValue {
+ uint64_t bytes[2];
+ uint64_t ios[2];
+} BlockIOBaseValue;
+
+struct BlockDriver {
+ const char *format_name;
+ int instance_size;
+ int (*bdrv_probe)(const uint8_t *buf, int buf_size, const char *filename);
+ int (*bdrv_probe_device)(const char *filename);
+
+ /* Any driver implementing this callback is expected to be able to handle
+ * NULL file names in its .bdrv_open() implementation */
+ void (*bdrv_parse_filename)(const char *filename, QDict *options, Error **errp);
+
+ /* For handling image reopen for split or non-split files */
+ int (*bdrv_reopen_prepare)(BDRVReopenState *reopen_state,
+ BlockReopenQueue *queue, Error **errp);
+ void (*bdrv_reopen_commit)(BDRVReopenState *reopen_state);
+ void (*bdrv_reopen_abort)(BDRVReopenState *reopen_state);
+
+ int (*bdrv_open)(BlockDriverState *bs, QDict *options, int flags);
+ int (*bdrv_file_open)(BlockDriverState *bs, QDict *options, int flags);
+ int (*bdrv_read)(BlockDriverState *bs, int64_t sector_num,
+ uint8_t *buf, int nb_sectors);
+ int (*bdrv_write)(BlockDriverState *bs, int64_t sector_num,
+ const uint8_t *buf, int nb_sectors);
+ void (*bdrv_close)(BlockDriverState *bs);
+ void (*bdrv_rebind)(BlockDriverState *bs);
+ int (*bdrv_create)(const char *filename, QEMUOptionParameter *options);
+ int (*bdrv_set_key)(BlockDriverState *bs, const char *key);
+ int (*bdrv_make_empty)(BlockDriverState *bs);
+ /* aio */
+ BlockDriverAIOCB *(*bdrv_aio_readv)(BlockDriverState *bs,
+ int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque);
+ BlockDriverAIOCB *(*bdrv_aio_writev)(BlockDriverState *bs,
+ int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque);
+ BlockDriverAIOCB *(*bdrv_aio_flush)(BlockDriverState *bs,
+ BlockDriverCompletionFunc *cb, void *opaque);
+ BlockDriverAIOCB *(*bdrv_aio_discard)(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors,
+ BlockDriverCompletionFunc *cb, void *opaque);
+
+ int coroutine_fn (*bdrv_co_readv)(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, QEMUIOVector *qiov);
+ int coroutine_fn (*bdrv_co_writev)(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, QEMUIOVector *qiov);
+ /*
+ * Efficiently zero a region of the disk image. Typically an image format
+ * would use a compact metadata representation to implement this. This
+ * function pointer may be NULL and .bdrv_co_writev() will be called
+ * instead.
+ */
+ int coroutine_fn (*bdrv_co_write_zeroes)(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors);
+ int coroutine_fn (*bdrv_co_discard)(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors);
+ int coroutine_fn (*bdrv_co_is_allocated)(BlockDriverState *bs,
+ int64_t sector_num, int nb_sectors, int *pnum);
+
+ /*
+ * Invalidate any cached meta-data.
+ */
+ void (*bdrv_invalidate_cache)(BlockDriverState *bs);
+
+ /*
+ * Flushes all data that was already written to the OS all the way down to
+ * the disk (for example raw-posix calls fsync()).
+ */
+ int coroutine_fn (*bdrv_co_flush_to_disk)(BlockDriverState *bs);
+
+ /*
+ * Flushes all internal caches to the OS. The data may still sit in a
+ * writeback cache of the host OS, but it will survive a crash of the qemu
+ * process.
+ */
+ int coroutine_fn (*bdrv_co_flush_to_os)(BlockDriverState *bs);
+
+ const char *protocol_name;
+ int (*bdrv_truncate)(BlockDriverState *bs, int64_t offset);
+ int64_t (*bdrv_getlength)(BlockDriverState *bs);
+ int64_t (*bdrv_get_allocated_file_size)(BlockDriverState *bs);
+ int (*bdrv_write_compressed)(BlockDriverState *bs, int64_t sector_num,
+ const uint8_t *buf, int nb_sectors);
+
+ int (*bdrv_snapshot_create)(BlockDriverState *bs,
+ QEMUSnapshotInfo *sn_info);
+ int (*bdrv_snapshot_goto)(BlockDriverState *bs,
+ const char *snapshot_id);
+ int (*bdrv_snapshot_delete)(BlockDriverState *bs, const char *snapshot_id);
+ int (*bdrv_snapshot_list)(BlockDriverState *bs,
+ QEMUSnapshotInfo **psn_info);
+ int (*bdrv_snapshot_load_tmp)(BlockDriverState *bs,
+ const char *snapshot_name);
+ int (*bdrv_get_info)(BlockDriverState *bs, BlockDriverInfo *bdi);
+
+ int (*bdrv_save_vmstate)(BlockDriverState *bs, QEMUIOVector *qiov,
+ int64_t pos);
+ int (*bdrv_load_vmstate)(BlockDriverState *bs, uint8_t *buf,
+ int64_t pos, int size);
+
+ int (*bdrv_change_backing_file)(BlockDriverState *bs,
+ const char *backing_file, const char *backing_fmt);
+
+ /* removable device specific */
+ int (*bdrv_is_inserted)(BlockDriverState *bs);
+ int (*bdrv_media_changed)(BlockDriverState *bs);
+ void (*bdrv_eject)(BlockDriverState *bs, bool eject_flag);
+ void (*bdrv_lock_medium)(BlockDriverState *bs, bool locked);
+
+ /* to control generic scsi devices */
+ int (*bdrv_ioctl)(BlockDriverState *bs, unsigned long int req, void *buf);
+ BlockDriverAIOCB *(*bdrv_aio_ioctl)(BlockDriverState *bs,
+ unsigned long int req, void *buf,
+ BlockDriverCompletionFunc *cb, void *opaque);
+
+ /* List of options for creating images, terminated by name == NULL */
+ QEMUOptionParameter *create_options;
+
+
+ /*
+ * Returns 0 for completed check, -errno for internal errors.
+ * The check results are stored in result.
+ */
+ int (*bdrv_check)(BlockDriverState* bs, BdrvCheckResult *result,
+ BdrvCheckMode fix);
+
+ void (*bdrv_debug_event)(BlockDriverState *bs, BlkDebugEvent event);
+
+ /* TODO Better pass a option string/QDict/QemuOpts to add any rule? */
+ int (*bdrv_debug_breakpoint)(BlockDriverState *bs, const char *event,
+ const char *tag);
+ int (*bdrv_debug_resume)(BlockDriverState *bs, const char *tag);
+ bool (*bdrv_debug_is_suspended)(BlockDriverState *bs, const char *tag);
+
+ /*
+ * Returns 1 if newly created images are guaranteed to contain only
+ * zeros, 0 otherwise.
+ */
+ int (*bdrv_has_zero_init)(BlockDriverState *bs);
+
+ QLIST_ENTRY(BlockDriver) list;
+};
+
+/*
+ * Note: the function bdrv_append() copies and swaps contents of
+ * BlockDriverStates, so if you add new fields to this struct, please
+ * inspect bdrv_append() to determine if the new fields need to be
+ * copied as well.
+ */
+struct BlockDriverState {
+ int64_t total_sectors; /* if we are reading a disk image, give its
+ size in sectors */
+ int read_only; /* if true, the media is read only */
+ int open_flags; /* flags used to open the file, re-used for re-open */
+ int encrypted; /* if true, the media is encrypted */
+ int valid_key; /* if true, a valid encryption key has been set */
+ int sg; /* if true, the device is a /dev/sg* */
+ int copy_on_read; /* if true, copy read backing sectors into image
+ note this is a reference count */
+
+ BlockDriver *drv; /* NULL means no media */
+ void *opaque;
+
+ void *dev; /* attached device model, if any */
+ /* TODO change to DeviceState when all users are qdevified */
+ const BlockDevOps *dev_ops;
+ void *dev_opaque;
+
+ char filename[1024];
+ char backing_file[1024]; /* if non zero, the image is a diff of
+ this file image */
+ char backing_format[16]; /* if non-zero and backing_file exists */
+ int is_temporary;
+
+ BlockDriverState *backing_hd;
+ BlockDriverState *file;
+
+ NotifierList close_notifiers;
+
+ /* Callback before write request is processed */
+ NotifierWithReturnList before_write_notifiers;
+
+ /* number of in-flight copy-on-read requests */
+ unsigned int copy_on_read_in_flight;
+
+ /* the time for latest disk I/O */
+ int64_t slice_start;
+ int64_t slice_end;
+ BlockIOLimit io_limits;
+ BlockIOBaseValue slice_submitted;
+ CoQueue throttled_reqs;
+ QEMUTimer *block_timer;
+ bool io_limits_enabled;
+
+ /* I/O stats (display with "info blockstats"). */
+ uint64_t nr_bytes[BDRV_MAX_IOTYPE];
+ uint64_t nr_ops[BDRV_MAX_IOTYPE];
+ uint64_t total_time_ns[BDRV_MAX_IOTYPE];
+ uint64_t wr_highest_sector;
+
+ /* Whether the disk can expand beyond total_sectors */
+ int growable;
+
+ /* the memory alignment required for the buffers handled by this driver */
+ int buffer_alignment;
+
+ /* do we need to tell the quest if we have a volatile write cache? */
+ int enable_write_cache;
+
+ /* NOTE: the following infos are only hints for real hardware
+ drivers. They are not used by the block driver */
+ BlockdevOnError on_read_error, on_write_error;
+ bool iostatus_enabled;
+ BlockDeviceIoStatus iostatus;
+ char device_name[32];
+ HBitmap *dirty_bitmap;
+ int in_use; /* users other than guest access, eg. block migration */
+ QTAILQ_ENTRY(BlockDriverState) list;
+
+ QLIST_HEAD(, BdrvTrackedRequest) tracked_requests;
+
+ /* long-running background operation */
+ BlockJob *job;
+
+ QDict *options;
+};
+
+int get_tmp_filename(char *filename, int size);
+
+void bdrv_set_io_limits(BlockDriverState *bs,
+ BlockIOLimit *io_limits);
+
+/**
+ * bdrv_add_before_write_notifier:
+ *
+ * Register a callback that is invoked before write requests are processed but
+ * after any throttling or waiting for overlapping requests.
+ */
+void bdrv_add_before_write_notifier(BlockDriverState *bs,
+ NotifierWithReturn *notifier);
+
+/**
+ * bdrv_get_aio_context:
+ *
+ * Returns: the currently bound #AioContext
+ */
+AioContext *bdrv_get_aio_context(BlockDriverState *bs);
+
+#ifdef _WIN32
+int is_windows_drive(const char *filename);
+#endif
+void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
+ enum MonitorEvent ev,
+ BlockErrorAction action, bool is_read);
+
+/**
+ * stream_start:
+ * @bs: Block device to operate on.
+ * @base: Block device that will become the new base, or %NULL to
+ * flatten the whole backing file chain onto @bs.
+ * @base_id: The file name that will be written to @bs as the new
+ * backing file if the job completes. Ignored if @base is %NULL.
+ * @speed: The maximum speed, in bytes per second, or 0 for unlimited.
+ * @on_error: The action to take upon error.
+ * @cb: Completion function for the job.
+ * @opaque: Opaque pointer value passed to @cb.
+ * @errp: Error object.
+ *
+ * Start a streaming operation on @bs. Clusters that are unallocated
+ * in @bs, but allocated in any image between @base and @bs (both
+ * exclusive) will be written to @bs. At the end of a successful
+ * streaming job, the backing file of @bs will be changed to
+ * @base_id in the written image and to @base in the live BlockDriverState.
+ */
+void stream_start(BlockDriverState *bs, BlockDriverState *base,
+ const char *base_id, int64_t speed, BlockdevOnError on_error,
+ BlockDriverCompletionFunc *cb,
+ void *opaque, Error **errp);
+
+/**
+ * commit_start:
+ * @bs: Top Block device
+ * @base: Block device that will be written into, and become the new top
+ * @speed: The maximum speed, in bytes per second, or 0 for unlimited.
+ * @on_error: The action to take upon error.
+ * @cb: Completion function for the job.
+ * @opaque: Opaque pointer value passed to @cb.
+ * @errp: Error object.
+ *
+ */
+void commit_start(BlockDriverState *bs, BlockDriverState *base,
+ BlockDriverState *top, int64_t speed,
+ BlockdevOnError on_error, BlockDriverCompletionFunc *cb,
+ void *opaque, Error **errp);
+
+/*
+ * mirror_start:
+ * @bs: Block device to operate on.
+ * @target: Block device to write to.
+ * @speed: The maximum speed, in bytes per second, or 0 for unlimited.
+ * @granularity: The chosen granularity for the dirty bitmap.
+ * @buf_size: The amount of data that can be in flight at one time.
+ * @mode: Whether to collapse all images in the chain to the target.
+ * @on_source_error: The action to take upon error reading from the source.
+ * @on_target_error: The action to take upon error writing to the target.
+ * @cb: Completion function for the job.
+ * @opaque: Opaque pointer value passed to @cb.
+ * @errp: Error object.
+ *
+ * Start a mirroring operation on @bs. Clusters that are allocated
+ * in @bs will be written to @bs until the job is cancelled or
+ * manually completed. At the end of a successful mirroring job,
+ * @bs will be switched to read from @target.
+ */
+void mirror_start(BlockDriverState *bs, BlockDriverState *target,
+ int64_t speed, int64_t granularity, int64_t buf_size,
+ MirrorSyncMode mode, BlockdevOnError on_source_error,
+ BlockdevOnError on_target_error,
+ BlockDriverCompletionFunc *cb,
+ void *opaque, Error **errp);
+
+/*
+ * backup_start:
+ * @bs: Block device to operate on.
+ * @target: Block device to write to.
+ * @speed: The maximum speed, in bytes per second, or 0 for unlimited.
+ * @on_source_error: The action to take upon error reading from the source.
+ * @on_target_error: The action to take upon error writing to the target.
+ * @cb: Completion function for the job.
+ * @opaque: Opaque pointer value passed to @cb.
+ *
+ * Start a backup operation on @bs. Clusters in @bs are written to @target
+ * until the job is cancelled or manually completed.
+ */
+void backup_start(BlockDriverState *bs, BlockDriverState *target,
+ int64_t speed, BlockdevOnError on_source_error,
+ BlockdevOnError on_target_error,
+ BlockDriverCompletionFunc *cb, void *opaque,
+ Error **errp);
+
+#endif /* BLOCK_INT_H */
diff --git a/contrib/qemu/include/block/blockjob.h b/contrib/qemu/include/block/blockjob.h
new file mode 100644
index 00000000000..c290d07bba0
--- /dev/null
+++ b/contrib/qemu/include/block/blockjob.h
@@ -0,0 +1,278 @@
+/*
+ * Declarations for long-running block device operations
+ *
+ * Copyright (c) 2011 IBM Corp.
+ * Copyright (c) 2012 Red Hat, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#ifndef BLOCKJOB_H
+#define BLOCKJOB_H 1
+
+#include "block/block.h"
+
+/**
+ * BlockJobType:
+ *
+ * A class type for block job objects.
+ */
+typedef struct BlockJobType {
+ /** Derived BlockJob struct size */
+ size_t instance_size;
+
+ /** String describing the operation, part of query-block-jobs QMP API */
+ const char *job_type;
+
+ /** Optional callback for job types that support setting a speed limit */
+ void (*set_speed)(BlockJob *job, int64_t speed, Error **errp);
+
+ /** Optional callback for job types that need to forward I/O status reset */
+ void (*iostatus_reset)(BlockJob *job);
+
+ /**
+ * Optional callback for job types whose completion must be triggered
+ * manually.
+ */
+ void (*complete)(BlockJob *job, Error **errp);
+} BlockJobType;
+
+/**
+ * BlockJob:
+ *
+ * Long-running operation on a BlockDriverState.
+ */
+struct BlockJob {
+ /** The job type, including the job vtable. */
+ const BlockJobType *job_type;
+
+ /** The block device on which the job is operating. */
+ BlockDriverState *bs;
+
+ /**
+ * The coroutine that executes the job. If not NULL, it is
+ * reentered when busy is false and the job is cancelled.
+ */
+ Coroutine *co;
+
+ /**
+ * Set to true if the job should cancel itself. The flag must
+ * always be tested just before toggling the busy flag from false
+ * to true. After a job has been cancelled, it should only yield
+ * if #qemu_aio_wait will ("sooner or later") reenter the coroutine.
+ */
+ bool cancelled;
+
+ /**
+ * Set to true if the job is either paused, or will pause itself
+ * as soon as possible (if busy == true).
+ */
+ bool paused;
+
+ /**
+ * Set to false by the job while it is in a quiescent state, where
+ * no I/O is pending and the job has yielded on any condition
+ * that is not detected by #qemu_aio_wait, such as a timer.
+ */
+ bool busy;
+
+ /** Status that is published by the query-block-jobs QMP API */
+ BlockDeviceIoStatus iostatus;
+
+ /** Offset that is published by the query-block-jobs QMP API */
+ int64_t offset;
+
+ /** Length that is published by the query-block-jobs QMP API */
+ int64_t len;
+
+ /** Speed that was set with @block_job_set_speed. */
+ int64_t speed;
+
+ /** The completion function that will be called when the job completes. */
+ BlockDriverCompletionFunc *cb;
+
+ /** The opaque value that is passed to the completion function. */
+ void *opaque;
+};
+
+/**
+ * block_job_create:
+ * @job_type: The class object for the newly-created job.
+ * @bs: The block
+ * @speed: The maximum speed, in bytes per second, or 0 for unlimited.
+ * @cb: Completion function for the job.
+ * @opaque: Opaque pointer value passed to @cb.
+ * @errp: Error object.
+ *
+ * Create a new long-running block device job and return it. The job
+ * will call @cb asynchronously when the job completes. Note that
+ * @bs may have been closed at the time the @cb it is called. If
+ * this is the case, the job may be reported as either cancelled or
+ * completed.
+ *
+ * This function is not part of the public job interface; it should be
+ * called from a wrapper that is specific to the job type.
+ */
+void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
+ int64_t speed, BlockDriverCompletionFunc *cb,
+ void *opaque, Error **errp);
+
+/**
+ * block_job_sleep_ns:
+ * @job: The job that calls the function.
+ * @clock: The clock to sleep on.
+ * @ns: How many nanoseconds to stop for.
+ *
+ * Put the job to sleep (assuming that it wasn't canceled) for @ns
+ * nanoseconds. Canceling the job will interrupt the wait immediately.
+ */
+void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns);
+
+/**
+ * block_job_completed:
+ * @job: The job being completed.
+ * @ret: The status code.
+ *
+ * Call the completion function that was registered at creation time, and
+ * free @job.
+ */
+void block_job_completed(BlockJob *job, int ret);
+
+/**
+ * block_job_set_speed:
+ * @job: The job to set the speed for.
+ * @speed: The new value
+ * @errp: Error object.
+ *
+ * Set a rate-limiting parameter for the job; the actual meaning may
+ * vary depending on the job type.
+ */
+void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp);
+
+/**
+ * block_job_cancel:
+ * @job: The job to be canceled.
+ *
+ * Asynchronously cancel the specified job.
+ */
+void block_job_cancel(BlockJob *job);
+
+/**
+ * block_job_complete:
+ * @job: The job to be completed.
+ * @errp: Error object.
+ *
+ * Asynchronously complete the specified job.
+ */
+void block_job_complete(BlockJob *job, Error **errp);
+
+/**
+ * block_job_is_cancelled:
+ * @job: The job being queried.
+ *
+ * Returns whether the job is scheduled for cancellation.
+ */
+bool block_job_is_cancelled(BlockJob *job);
+
+/**
+ * block_job_query:
+ * @job: The job to get information about.
+ *
+ * Return information about a job.
+ */
+BlockJobInfo *block_job_query(BlockJob *job);
+
+/**
+ * block_job_pause:
+ * @job: The job to be paused.
+ *
+ * Asynchronously pause the specified job.
+ */
+void block_job_pause(BlockJob *job);
+
+/**
+ * block_job_resume:
+ * @job: The job to be resumed.
+ *
+ * Resume the specified job.
+ */
+void block_job_resume(BlockJob *job);
+
+/**
+ * qobject_from_block_job:
+ * @job: The job whose information is requested.
+ *
+ * Return a QDict corresponding to @job's query-block-jobs entry.
+ */
+QObject *qobject_from_block_job(BlockJob *job);
+
+/**
+ * block_job_ready:
+ * @job: The job which is now ready to complete.
+ *
+ * Send a BLOCK_JOB_READY event for the specified job.
+ */
+void block_job_ready(BlockJob *job);
+
+/**
+ * block_job_is_paused:
+ * @job: The job being queried.
+ *
+ * Returns whether the job is currently paused, or will pause
+ * as soon as it reaches a sleeping point.
+ */
+bool block_job_is_paused(BlockJob *job);
+
+/**
+ * block_job_cancel_sync:
+ * @job: The job to be canceled.
+ *
+ * Synchronously cancel the job. The completion callback is called
+ * before the function returns. The job may actually complete
+ * instead of canceling itself; the circumstances under which this
+ * happens depend on the kind of job that is active.
+ *
+ * Returns the return value from the job if the job actually completed
+ * during the call, or -ECANCELED if it was canceled.
+ */
+int block_job_cancel_sync(BlockJob *job);
+
+/**
+ * block_job_iostatus_reset:
+ * @job: The job whose I/O status should be reset.
+ *
+ * Reset I/O status on @job and on BlockDriverState objects it uses,
+ * other than job->bs.
+ */
+void block_job_iostatus_reset(BlockJob *job);
+
+/**
+ * block_job_error_action:
+ * @job: The job to signal an error for.
+ * @bs: The block device on which to set an I/O error.
+ * @on_err: The error action setting.
+ * @is_read: Whether the operation was a read.
+ * @error: The error that was reported.
+ *
+ * Report an I/O error for a block job and possibly stop the VM. Return the
+ * action that was selected based on @on_err and @error.
+ */
+BlockErrorAction block_job_error_action(BlockJob *job, BlockDriverState *bs,
+ BlockdevOnError on_err,
+ int is_read, int error);
+#endif
diff --git a/contrib/qemu/include/block/coroutine.h b/contrib/qemu/include/block/coroutine.h
new file mode 100644
index 00000000000..377805a3b08
--- /dev/null
+++ b/contrib/qemu/include/block/coroutine.h
@@ -0,0 +1,218 @@
+/*
+ * QEMU coroutine implementation
+ *
+ * Copyright IBM, Corp. 2011
+ *
+ * Authors:
+ * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
+ * Kevin Wolf <kwolf@redhat.com>
+ *
+ * This work is licensed under the terms of the GNU LGPL, version 2 or later.
+ * See the COPYING.LIB file in the top-level directory.
+ *
+ */
+
+#ifndef QEMU_COROUTINE_H
+#define QEMU_COROUTINE_H
+
+#include <stdbool.h>
+#include "qemu/queue.h"
+#include "qemu/timer.h"
+
+/**
+ * Coroutines are a mechanism for stack switching and can be used for
+ * cooperative userspace threading. These functions provide a simple but
+ * useful flavor of coroutines that is suitable for writing sequential code,
+ * rather than callbacks, for operations that need to give up control while
+ * waiting for events to complete.
+ *
+ * These functions are re-entrant and may be used outside the global mutex.
+ */
+
+/**
+ * Mark a function that executes in coroutine context
+ *
+ * Functions that execute in coroutine context cannot be called directly from
+ * normal functions. In the future it would be nice to enable compiler or
+ * static checker support for catching such errors. This annotation might make
+ * it possible and in the meantime it serves as documentation.
+ *
+ * For example:
+ *
+ * static void coroutine_fn foo(void) {
+ * ....
+ * }
+ */
+#define coroutine_fn
+
+typedef struct Coroutine Coroutine;
+
+/**
+ * Coroutine entry point
+ *
+ * When the coroutine is entered for the first time, opaque is passed in as an
+ * argument.
+ *
+ * When this function returns, the coroutine is destroyed automatically and
+ * execution continues in the caller who last entered the coroutine.
+ */
+typedef void coroutine_fn CoroutineEntry(void *opaque);
+
+/**
+ * Create a new coroutine
+ *
+ * Use qemu_coroutine_enter() to actually transfer control to the coroutine.
+ */
+Coroutine *qemu_coroutine_create(CoroutineEntry *entry);
+
+/**
+ * Transfer control to a coroutine
+ *
+ * The opaque argument is passed as the argument to the entry point when
+ * entering the coroutine for the first time. It is subsequently ignored.
+ */
+void qemu_coroutine_enter(Coroutine *coroutine, void *opaque);
+
+/**
+ * Transfer control back to a coroutine's caller
+ *
+ * This function does not return until the coroutine is re-entered using
+ * qemu_coroutine_enter().
+ */
+void coroutine_fn qemu_coroutine_yield(void);
+
+/**
+ * Get the currently executing coroutine
+ */
+Coroutine *coroutine_fn qemu_coroutine_self(void);
+
+/**
+ * Return whether or not currently inside a coroutine
+ *
+ * This can be used to write functions that work both when in coroutine context
+ * and when not in coroutine context. Note that such functions cannot use the
+ * coroutine_fn annotation since they work outside coroutine context.
+ */
+bool qemu_in_coroutine(void);
+
+
+
+/**
+ * CoQueues are a mechanism to queue coroutines in order to continue executing
+ * them later. They provide the fundamental primitives on which coroutine locks
+ * are built.
+ */
+typedef struct CoQueue {
+ QTAILQ_HEAD(, Coroutine) entries;
+ AioContext *ctx;
+} CoQueue;
+
+/**
+ * Initialise a CoQueue. This must be called before any other operation is used
+ * on the CoQueue.
+ */
+void qemu_co_queue_init(CoQueue *queue);
+
+/**
+ * Adds the current coroutine to the CoQueue and transfers control to the
+ * caller of the coroutine.
+ */
+void coroutine_fn qemu_co_queue_wait(CoQueue *queue);
+
+/**
+ * Adds the current coroutine to the head of the CoQueue and transfers control to the
+ * caller of the coroutine.
+ */
+void coroutine_fn qemu_co_queue_wait_insert_head(CoQueue *queue);
+
+/**
+ * Restarts the next coroutine in the CoQueue and removes it from the queue.
+ *
+ * Returns true if a coroutine was restarted, false if the queue is empty.
+ */
+bool qemu_co_queue_next(CoQueue *queue);
+
+/**
+ * Restarts all coroutines in the CoQueue and leaves the queue empty.
+ */
+void qemu_co_queue_restart_all(CoQueue *queue);
+
+/**
+ * Checks if the CoQueue is empty.
+ */
+bool qemu_co_queue_empty(CoQueue *queue);
+
+
+/**
+ * Provides a mutex that can be used to synchronise coroutines
+ */
+typedef struct CoMutex {
+ bool locked;
+ CoQueue queue;
+} CoMutex;
+
+/**
+ * Initialises a CoMutex. This must be called before any other operation is used
+ * on the CoMutex.
+ */
+void qemu_co_mutex_init(CoMutex *mutex);
+
+/**
+ * Locks the mutex. If the lock cannot be taken immediately, control is
+ * transferred to the caller of the current coroutine.
+ */
+void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex);
+
+/**
+ * Unlocks the mutex and schedules the next coroutine that was waiting for this
+ * lock to be run.
+ */
+void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex);
+
+typedef struct CoRwlock {
+ bool writer;
+ int reader;
+ CoQueue queue;
+} CoRwlock;
+
+/**
+ * Initialises a CoRwlock. This must be called before any other operation
+ * is used on the CoRwlock
+ */
+void qemu_co_rwlock_init(CoRwlock *lock);
+
+/**
+ * Read locks the CoRwlock. If the lock cannot be taken immediately because
+ * of a parallel writer, control is transferred to the caller of the current
+ * coroutine.
+ */
+void qemu_co_rwlock_rdlock(CoRwlock *lock);
+
+/**
+ * Write Locks the mutex. If the lock cannot be taken immediately because
+ * of a parallel reader, control is transferred to the caller of the current
+ * coroutine.
+ */
+void qemu_co_rwlock_wrlock(CoRwlock *lock);
+
+/**
+ * Unlocks the read/write lock and schedules the next coroutine that was
+ * waiting for this lock to be run.
+ */
+void qemu_co_rwlock_unlock(CoRwlock *lock);
+
+/**
+ * Yield the coroutine for a given duration
+ *
+ * Note this function uses timers and hence only works when a main loop is in
+ * use. See main-loop.h and do not use from qemu-tool programs.
+ */
+void coroutine_fn co_sleep_ns(QEMUClock *clock, int64_t ns);
+
+/**
+ * Yield until a file descriptor becomes readable
+ *
+ * Note that this function clobbers the handlers for the file descriptor.
+ */
+void coroutine_fn yield_until_fd_readable(int fd);
+#endif /* QEMU_COROUTINE_H */
diff --git a/contrib/qemu/include/block/coroutine_int.h b/contrib/qemu/include/block/coroutine_int.h
new file mode 100644
index 00000000000..f133d65af86
--- /dev/null
+++ b/contrib/qemu/include/block/coroutine_int.h
@@ -0,0 +1,53 @@
+/*
+ * Coroutine internals
+ *
+ * Copyright (c) 2011 Kevin Wolf <kwolf@redhat.com>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef QEMU_COROUTINE_INT_H
+#define QEMU_COROUTINE_INT_H
+
+#include "qemu/queue.h"
+#include "block/coroutine.h"
+
+typedef enum {
+ COROUTINE_YIELD = 1,
+ COROUTINE_TERMINATE = 2,
+} CoroutineAction;
+
+struct Coroutine {
+ CoroutineEntry *entry;
+ void *entry_arg;
+ Coroutine *caller;
+ QSLIST_ENTRY(Coroutine) pool_next;
+
+ /* Coroutines that should be woken up when we yield or terminate */
+ QTAILQ_HEAD(, Coroutine) co_queue_wakeup;
+ QTAILQ_ENTRY(Coroutine) co_queue_next;
+};
+
+Coroutine *qemu_coroutine_new(void);
+void qemu_coroutine_delete(Coroutine *co);
+CoroutineAction qemu_coroutine_switch(Coroutine *from, Coroutine *to,
+ CoroutineAction action);
+void coroutine_fn qemu_co_queue_run_restart(Coroutine *co);
+
+#endif
diff --git a/contrib/qemu/include/block/snapshot.h b/contrib/qemu/include/block/snapshot.h
new file mode 100644
index 00000000000..eaf61f0326e
--- /dev/null
+++ b/contrib/qemu/include/block/snapshot.h
@@ -0,0 +1,53 @@
+/*
+ * Block layer snapshot related functions
+ *
+ * Copyright (c) 2003-2008 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef SNAPSHOT_H
+#define SNAPSHOT_H
+
+#include "qemu-common.h"
+
+typedef struct QEMUSnapshotInfo {
+ char id_str[128]; /* unique snapshot id */
+ /* the following fields are informative. They are not needed for
+ the consistency of the snapshot */
+ char name[256]; /* user chosen name */
+ uint64_t vm_state_size; /* VM state info size */
+ uint32_t date_sec; /* UTC date of the snapshot */
+ uint32_t date_nsec;
+ uint64_t vm_clock_nsec; /* VM clock relative to boot */
+} QEMUSnapshotInfo;
+
+int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
+ const char *name);
+int bdrv_can_snapshot(BlockDriverState *bs);
+int bdrv_snapshot_create(BlockDriverState *bs,
+ QEMUSnapshotInfo *sn_info);
+int bdrv_snapshot_goto(BlockDriverState *bs,
+ const char *snapshot_id);
+int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id);
+int bdrv_snapshot_list(BlockDriverState *bs,
+ QEMUSnapshotInfo **psn_info);
+int bdrv_snapshot_load_tmp(BlockDriverState *bs,
+ const char *snapshot_name);
+#endif
diff --git a/contrib/qemu/include/config.h b/contrib/qemu/include/config.h
new file mode 100644
index 00000000000..e20f78696a1
--- /dev/null
+++ b/contrib/qemu/include/config.h
@@ -0,0 +1,2 @@
+#include "config-host.h"
+#include "config-target.h"
diff --git a/contrib/qemu/include/exec/cpu-common.h b/contrib/qemu/include/exec/cpu-common.h
new file mode 100644
index 00000000000..e4996e19c32
--- /dev/null
+++ b/contrib/qemu/include/exec/cpu-common.h
@@ -0,0 +1,124 @@
+#ifndef CPU_COMMON_H
+#define CPU_COMMON_H 1
+
+/* CPU interfaces that are target independent. */
+
+#ifndef CONFIG_USER_ONLY
+#include "exec/hwaddr.h"
+#endif
+
+#ifndef NEED_CPU_H
+#include "exec/poison.h"
+#endif
+
+#include "qemu/bswap.h"
+#include "qemu/queue.h"
+
+/**
+ * CPUListState:
+ * @cpu_fprintf: Print function.
+ * @file: File to print to using @cpu_fprint.
+ *
+ * State commonly used for iterating over CPU models.
+ */
+typedef struct CPUListState {
+ fprintf_function cpu_fprintf;
+ FILE *file;
+} CPUListState;
+
+#if !defined(CONFIG_USER_ONLY)
+
+enum device_endian {
+ DEVICE_NATIVE_ENDIAN,
+ DEVICE_BIG_ENDIAN,
+ DEVICE_LITTLE_ENDIAN,
+};
+
+/* address in the RAM (different from a physical address) */
+#if defined(CONFIG_XEN_BACKEND)
+typedef uint64_t ram_addr_t;
+# define RAM_ADDR_MAX UINT64_MAX
+# define RAM_ADDR_FMT "%" PRIx64
+#else
+typedef uintptr_t ram_addr_t;
+# define RAM_ADDR_MAX UINTPTR_MAX
+# define RAM_ADDR_FMT "%" PRIxPTR
+#endif
+
+/* memory API */
+
+typedef void CPUWriteMemoryFunc(void *opaque, hwaddr addr, uint32_t value);
+typedef uint32_t CPUReadMemoryFunc(void *opaque, hwaddr addr);
+
+void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
+/* This should not be used by devices. */
+MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr);
+void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev);
+
+void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
+ int len, int is_write);
+static inline void cpu_physical_memory_read(hwaddr addr,
+ void *buf, int len)
+{
+ cpu_physical_memory_rw(addr, buf, len, 0);
+}
+static inline void cpu_physical_memory_write(hwaddr addr,
+ const void *buf, int len)
+{
+ cpu_physical_memory_rw(addr, (void *)buf, len, 1);
+}
+void *cpu_physical_memory_map(hwaddr addr,
+ hwaddr *plen,
+ int is_write);
+void cpu_physical_memory_unmap(void *buffer, hwaddr len,
+ int is_write, hwaddr access_len);
+void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
+
+bool cpu_physical_memory_is_io(hwaddr phys_addr);
+
+/* Coalesced MMIO regions are areas where write operations can be reordered.
+ * This usually implies that write operations are side-effect free. This allows
+ * batching which can make a major impact on performance when using
+ * virtualization.
+ */
+void qemu_flush_coalesced_mmio_buffer(void);
+
+uint32_t ldub_phys(hwaddr addr);
+uint32_t lduw_le_phys(hwaddr addr);
+uint32_t lduw_be_phys(hwaddr addr);
+uint32_t ldl_le_phys(hwaddr addr);
+uint32_t ldl_be_phys(hwaddr addr);
+uint64_t ldq_le_phys(hwaddr addr);
+uint64_t ldq_be_phys(hwaddr addr);
+void stb_phys(hwaddr addr, uint32_t val);
+void stw_le_phys(hwaddr addr, uint32_t val);
+void stw_be_phys(hwaddr addr, uint32_t val);
+void stl_le_phys(hwaddr addr, uint32_t val);
+void stl_be_phys(hwaddr addr, uint32_t val);
+void stq_le_phys(hwaddr addr, uint64_t val);
+void stq_be_phys(hwaddr addr, uint64_t val);
+
+#ifdef NEED_CPU_H
+uint32_t lduw_phys(hwaddr addr);
+uint32_t ldl_phys(hwaddr addr);
+uint64_t ldq_phys(hwaddr addr);
+void stl_phys_notdirty(hwaddr addr, uint32_t val);
+void stw_phys(hwaddr addr, uint32_t val);
+void stl_phys(hwaddr addr, uint32_t val);
+void stq_phys(hwaddr addr, uint64_t val);
+#endif
+
+void cpu_physical_memory_write_rom(hwaddr addr,
+ const uint8_t *buf, int len);
+
+extern struct MemoryRegion io_mem_rom;
+extern struct MemoryRegion io_mem_notdirty;
+
+typedef void (RAMBlockIterFunc)(void *host_addr,
+ ram_addr_t offset, ram_addr_t length, void *opaque);
+
+void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
+
+#endif
+
+#endif /* !CPU_COMMON_H */
diff --git a/contrib/qemu/include/exec/hwaddr.h b/contrib/qemu/include/exec/hwaddr.h
new file mode 100644
index 00000000000..c9eb78fba18
--- /dev/null
+++ b/contrib/qemu/include/exec/hwaddr.h
@@ -0,0 +1,20 @@
+/* Define hwaddr if it exists. */
+
+#ifndef HWADDR_H
+#define HWADDR_H
+
+#define HWADDR_BITS 64
+/* hwaddr is the type of a physical address (its size can
+ be different from 'target_ulong'). */
+
+typedef uint64_t hwaddr;
+#define HWADDR_MAX UINT64_MAX
+#define TARGET_FMT_plx "%016" PRIx64
+#define HWADDR_PRId PRId64
+#define HWADDR_PRIi PRIi64
+#define HWADDR_PRIo PRIo64
+#define HWADDR_PRIu PRIu64
+#define HWADDR_PRIx PRIx64
+#define HWADDR_PRIX PRIX64
+
+#endif
diff --git a/contrib/qemu/include/exec/poison.h b/contrib/qemu/include/exec/poison.h
new file mode 100644
index 00000000000..2341a750413
--- /dev/null
+++ b/contrib/qemu/include/exec/poison.h
@@ -0,0 +1,63 @@
+/* Poison identifiers that should not be used when building
+ target independent device code. */
+
+#ifndef HW_POISON_H
+#define HW_POISON_H
+#ifdef __GNUC__
+
+#pragma GCC poison TARGET_I386
+#pragma GCC poison TARGET_X86_64
+#pragma GCC poison TARGET_ALPHA
+#pragma GCC poison TARGET_ARM
+#pragma GCC poison TARGET_CRIS
+#pragma GCC poison TARGET_LM32
+#pragma GCC poison TARGET_M68K
+#pragma GCC poison TARGET_MIPS
+#pragma GCC poison TARGET_MIPS64
+#pragma GCC poison TARGET_OPENRISC
+#pragma GCC poison TARGET_PPC
+#pragma GCC poison TARGET_PPCEMB
+#pragma GCC poison TARGET_PPC64
+#pragma GCC poison TARGET_ABI32
+#pragma GCC poison TARGET_SH4
+#pragma GCC poison TARGET_SPARC
+#pragma GCC poison TARGET_SPARC64
+
+#pragma GCC poison TARGET_WORDS_BIGENDIAN
+#pragma GCC poison BSWAP_NEEDED
+
+#pragma GCC poison TARGET_LONG_BITS
+#pragma GCC poison TARGET_FMT_lx
+#pragma GCC poison TARGET_FMT_ld
+
+#pragma GCC poison TARGET_PAGE_SIZE
+#pragma GCC poison TARGET_PAGE_MASK
+#pragma GCC poison TARGET_PAGE_BITS
+#pragma GCC poison TARGET_PAGE_ALIGN
+
+#pragma GCC poison CPUArchState
+#pragma GCC poison env
+
+#pragma GCC poison lduw_phys
+#pragma GCC poison ldl_phys
+#pragma GCC poison ldq_phys
+#pragma GCC poison stl_phys_notdirty
+#pragma GCC poison stw_phys
+#pragma GCC poison stl_phys
+#pragma GCC poison stq_phys
+
+#pragma GCC poison CPU_INTERRUPT_HARD
+#pragma GCC poison CPU_INTERRUPT_EXITTB
+#pragma GCC poison CPU_INTERRUPT_HALT
+#pragma GCC poison CPU_INTERRUPT_DEBUG
+#pragma GCC poison CPU_INTERRUPT_TGT_EXT_0
+#pragma GCC poison CPU_INTERRUPT_TGT_EXT_1
+#pragma GCC poison CPU_INTERRUPT_TGT_EXT_2
+#pragma GCC poison CPU_INTERRUPT_TGT_EXT_3
+#pragma GCC poison CPU_INTERRUPT_TGT_EXT_4
+#pragma GCC poison CPU_INTERRUPT_TGT_INT_0
+#pragma GCC poison CPU_INTERRUPT_TGT_INT_1
+#pragma GCC poison CPU_INTERRUPT_TGT_INT_2
+
+#endif
+#endif
diff --git a/contrib/qemu/include/fpu/softfloat.h b/contrib/qemu/include/fpu/softfloat.h
new file mode 100644
index 00000000000..f3927e2419f
--- /dev/null
+++ b/contrib/qemu/include/fpu/softfloat.h
@@ -0,0 +1,641 @@
+/*
+ * QEMU float support
+ *
+ * Derived from SoftFloat.
+ */
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+#ifndef SOFTFLOAT_H
+#define SOFTFLOAT_H
+
+#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
+#include <sunmath.h>
+#endif
+
+#include <inttypes.h>
+#include "config-host.h"
+#include "qemu/osdep.h"
+
+/*----------------------------------------------------------------------------
+| Each of the following `typedef's defines the most convenient type that holds
+| integers of at least as many bits as specified. For example, `uint8' should
+| be the most convenient type that can hold unsigned integers of as many as
+| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
+| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
+| to the same as `int'.
+*----------------------------------------------------------------------------*/
+typedef uint8_t flag;
+typedef uint8_t uint8;
+typedef int8_t int8;
+typedef unsigned int uint32;
+typedef signed int int32;
+typedef uint64_t uint64;
+typedef int64_t int64;
+
+#define LIT64( a ) a##LL
+#define INLINE static inline
+
+#define STATUS_PARAM , float_status *status
+#define STATUS(field) status->field
+#define STATUS_VAR , status
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point ordering relations
+*----------------------------------------------------------------------------*/
+enum {
+ float_relation_less = -1,
+ float_relation_equal = 0,
+ float_relation_greater = 1,
+ float_relation_unordered = 2
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point types.
+*----------------------------------------------------------------------------*/
+/* Use structures for soft-float types. This prevents accidentally mixing
+ them with native int/float types. A sufficiently clever compiler and
+ sane ABI should be able to see though these structs. However
+ x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
+//#define USE_SOFTFLOAT_STRUCT_TYPES
+#ifdef USE_SOFTFLOAT_STRUCT_TYPES
+typedef struct {
+ uint16_t v;
+} float16;
+#define float16_val(x) (((float16)(x)).v)
+#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
+#define const_float16(x) { x }
+typedef struct {
+ uint32_t v;
+} float32;
+/* The cast ensures an error if the wrong type is passed. */
+#define float32_val(x) (((float32)(x)).v)
+#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
+#define const_float32(x) { x }
+typedef struct {
+ uint64_t v;
+} float64;
+#define float64_val(x) (((float64)(x)).v)
+#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
+#define const_float64(x) { x }
+#else
+typedef uint16_t float16;
+typedef uint32_t float32;
+typedef uint64_t float64;
+#define float16_val(x) (x)
+#define float32_val(x) (x)
+#define float64_val(x) (x)
+#define make_float16(x) (x)
+#define make_float32(x) (x)
+#define make_float64(x) (x)
+#define const_float16(x) (x)
+#define const_float32(x) (x)
+#define const_float64(x) (x)
+#endif
+typedef struct {
+ uint64_t low;
+ uint16_t high;
+} floatx80;
+#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
+#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
+typedef struct {
+#ifdef HOST_WORDS_BIGENDIAN
+ uint64_t high, low;
+#else
+ uint64_t low, high;
+#endif
+} float128;
+#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
+#define make_float128_init(high_, low_) { .high = high_, .low = low_ }
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point underflow tininess-detection mode.
+*----------------------------------------------------------------------------*/
+enum {
+ float_tininess_after_rounding = 0,
+ float_tininess_before_rounding = 1
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point rounding mode.
+*----------------------------------------------------------------------------*/
+enum {
+ float_round_nearest_even = 0,
+ float_round_down = 1,
+ float_round_up = 2,
+ float_round_to_zero = 3
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point exception flags.
+*----------------------------------------------------------------------------*/
+enum {
+ float_flag_invalid = 1,
+ float_flag_divbyzero = 4,
+ float_flag_overflow = 8,
+ float_flag_underflow = 16,
+ float_flag_inexact = 32,
+ float_flag_input_denormal = 64,
+ float_flag_output_denormal = 128
+};
+
+typedef struct float_status {
+ signed char float_detect_tininess;
+ signed char float_rounding_mode;
+ signed char float_exception_flags;
+ signed char floatx80_rounding_precision;
+ /* should denormalised results go to zero and set the inexact flag? */
+ flag flush_to_zero;
+ /* should denormalised inputs go to zero and set the input_denormal flag? */
+ flag flush_inputs_to_zero;
+ flag default_nan_mode;
+} float_status;
+
+void set_float_rounding_mode(int val STATUS_PARAM);
+void set_float_exception_flags(int val STATUS_PARAM);
+INLINE void set_float_detect_tininess(int val STATUS_PARAM)
+{
+ STATUS(float_detect_tininess) = val;
+}
+INLINE void set_flush_to_zero(flag val STATUS_PARAM)
+{
+ STATUS(flush_to_zero) = val;
+}
+INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
+{
+ STATUS(flush_inputs_to_zero) = val;
+}
+INLINE void set_default_nan_mode(flag val STATUS_PARAM)
+{
+ STATUS(default_nan_mode) = val;
+}
+INLINE int get_float_exception_flags(float_status *status)
+{
+ return STATUS(float_exception_flags);
+}
+void set_floatx80_rounding_precision(int val STATUS_PARAM);
+
+/*----------------------------------------------------------------------------
+| Routine to raise any or all of the software IEC/IEEE floating-point
+| exception flags.
+*----------------------------------------------------------------------------*/
+void float_raise( int8 flags STATUS_PARAM);
+
+/*----------------------------------------------------------------------------
+| Options to indicate which negations to perform in float*_muladd()
+| Using these differs from negating an input or output before calling
+| the muladd function in that this means that a NaN doesn't have its
+| sign bit inverted before it is propagated.
+*----------------------------------------------------------------------------*/
+enum {
+ float_muladd_negate_c = 1,
+ float_muladd_negate_product = 2,
+ float_muladd_negate_result = 4,
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE integer-to-floating-point conversion routines.
+*----------------------------------------------------------------------------*/
+float32 int32_to_float32( int32 STATUS_PARAM );
+float64 int32_to_float64( int32 STATUS_PARAM );
+float32 uint32_to_float32( uint32 STATUS_PARAM );
+float64 uint32_to_float64( uint32 STATUS_PARAM );
+floatx80 int32_to_floatx80( int32 STATUS_PARAM );
+float128 int32_to_float128( int32 STATUS_PARAM );
+float32 int64_to_float32( int64 STATUS_PARAM );
+float32 uint64_to_float32( uint64 STATUS_PARAM );
+float64 int64_to_float64( int64 STATUS_PARAM );
+float64 uint64_to_float64( uint64 STATUS_PARAM );
+floatx80 int64_to_floatx80( int64 STATUS_PARAM );
+float128 int64_to_float128( int64 STATUS_PARAM );
+float128 uint64_to_float128( uint64 STATUS_PARAM );
+
+/*----------------------------------------------------------------------------
+| Software half-precision conversion routines.
+*----------------------------------------------------------------------------*/
+float16 float32_to_float16( float32, flag STATUS_PARAM );
+float32 float16_to_float32( float16, flag STATUS_PARAM );
+
+/*----------------------------------------------------------------------------
+| Software half-precision operations.
+*----------------------------------------------------------------------------*/
+int float16_is_quiet_nan( float16 );
+int float16_is_signaling_nan( float16 );
+float16 float16_maybe_silence_nan( float16 );
+
+INLINE int float16_is_any_nan(float16 a)
+{
+ return ((float16_val(a) & ~0x8000) > 0x7c00);
+}
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated half-precision NaN.
+*----------------------------------------------------------------------------*/
+extern const float16 float16_default_nan;
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
+uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
+int32 float32_to_int32( float32 STATUS_PARAM );
+int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
+uint32 float32_to_uint32( float32 STATUS_PARAM );
+uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
+int64 float32_to_int64( float32 STATUS_PARAM );
+int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
+float64 float32_to_float64( float32 STATUS_PARAM );
+floatx80 float32_to_floatx80( float32 STATUS_PARAM );
+float128 float32_to_float128( float32 STATUS_PARAM );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision operations.
+*----------------------------------------------------------------------------*/
+float32 float32_round_to_int( float32 STATUS_PARAM );
+float32 float32_add( float32, float32 STATUS_PARAM );
+float32 float32_sub( float32, float32 STATUS_PARAM );
+float32 float32_mul( float32, float32 STATUS_PARAM );
+float32 float32_div( float32, float32 STATUS_PARAM );
+float32 float32_rem( float32, float32 STATUS_PARAM );
+float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
+float32 float32_sqrt( float32 STATUS_PARAM );
+float32 float32_exp2( float32 STATUS_PARAM );
+float32 float32_log2( float32 STATUS_PARAM );
+int float32_eq( float32, float32 STATUS_PARAM );
+int float32_le( float32, float32 STATUS_PARAM );
+int float32_lt( float32, float32 STATUS_PARAM );
+int float32_unordered( float32, float32 STATUS_PARAM );
+int float32_eq_quiet( float32, float32 STATUS_PARAM );
+int float32_le_quiet( float32, float32 STATUS_PARAM );
+int float32_lt_quiet( float32, float32 STATUS_PARAM );
+int float32_unordered_quiet( float32, float32 STATUS_PARAM );
+int float32_compare( float32, float32 STATUS_PARAM );
+int float32_compare_quiet( float32, float32 STATUS_PARAM );
+float32 float32_min(float32, float32 STATUS_PARAM);
+float32 float32_max(float32, float32 STATUS_PARAM);
+int float32_is_quiet_nan( float32 );
+int float32_is_signaling_nan( float32 );
+float32 float32_maybe_silence_nan( float32 );
+float32 float32_scalbn( float32, int STATUS_PARAM );
+
+INLINE float32 float32_abs(float32 a)
+{
+ /* Note that abs does *not* handle NaN specially, nor does
+ * it flush denormal inputs to zero.
+ */
+ return make_float32(float32_val(a) & 0x7fffffff);
+}
+
+INLINE float32 float32_chs(float32 a)
+{
+ /* Note that chs does *not* handle NaN specially, nor does
+ * it flush denormal inputs to zero.
+ */
+ return make_float32(float32_val(a) ^ 0x80000000);
+}
+
+INLINE int float32_is_infinity(float32 a)
+{
+ return (float32_val(a) & 0x7fffffff) == 0x7f800000;
+}
+
+INLINE int float32_is_neg(float32 a)
+{
+ return float32_val(a) >> 31;
+}
+
+INLINE int float32_is_zero(float32 a)
+{
+ return (float32_val(a) & 0x7fffffff) == 0;
+}
+
+INLINE int float32_is_any_nan(float32 a)
+{
+ return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
+}
+
+INLINE int float32_is_zero_or_denormal(float32 a)
+{
+ return (float32_val(a) & 0x7f800000) == 0;
+}
+
+INLINE float32 float32_set_sign(float32 a, int sign)
+{
+ return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
+}
+
+#define float32_zero make_float32(0)
+#define float32_one make_float32(0x3f800000)
+#define float32_ln2 make_float32(0x3f317218)
+#define float32_pi make_float32(0x40490fdb)
+#define float32_half make_float32(0x3f000000)
+#define float32_infinity make_float32(0x7f800000)
+
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated single-precision NaN.
+*----------------------------------------------------------------------------*/
+extern const float32 float32_default_nan;
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
+uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
+int32 float64_to_int32( float64 STATUS_PARAM );
+int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
+uint32 float64_to_uint32( float64 STATUS_PARAM );
+uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
+int64 float64_to_int64( float64 STATUS_PARAM );
+int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
+uint64 float64_to_uint64 (float64 a STATUS_PARAM);
+uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
+float32 float64_to_float32( float64 STATUS_PARAM );
+floatx80 float64_to_floatx80( float64 STATUS_PARAM );
+float128 float64_to_float128( float64 STATUS_PARAM );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision operations.
+*----------------------------------------------------------------------------*/
+float64 float64_round_to_int( float64 STATUS_PARAM );
+float64 float64_trunc_to_int( float64 STATUS_PARAM );
+float64 float64_add( float64, float64 STATUS_PARAM );
+float64 float64_sub( float64, float64 STATUS_PARAM );
+float64 float64_mul( float64, float64 STATUS_PARAM );
+float64 float64_div( float64, float64 STATUS_PARAM );
+float64 float64_rem( float64, float64 STATUS_PARAM );
+float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
+float64 float64_sqrt( float64 STATUS_PARAM );
+float64 float64_log2( float64 STATUS_PARAM );
+int float64_eq( float64, float64 STATUS_PARAM );
+int float64_le( float64, float64 STATUS_PARAM );
+int float64_lt( float64, float64 STATUS_PARAM );
+int float64_unordered( float64, float64 STATUS_PARAM );
+int float64_eq_quiet( float64, float64 STATUS_PARAM );
+int float64_le_quiet( float64, float64 STATUS_PARAM );
+int float64_lt_quiet( float64, float64 STATUS_PARAM );
+int float64_unordered_quiet( float64, float64 STATUS_PARAM );
+int float64_compare( float64, float64 STATUS_PARAM );
+int float64_compare_quiet( float64, float64 STATUS_PARAM );
+float64 float64_min(float64, float64 STATUS_PARAM);
+float64 float64_max(float64, float64 STATUS_PARAM);
+int float64_is_quiet_nan( float64 a );
+int float64_is_signaling_nan( float64 );
+float64 float64_maybe_silence_nan( float64 );
+float64 float64_scalbn( float64, int STATUS_PARAM );
+
+INLINE float64 float64_abs(float64 a)
+{
+ /* Note that abs does *not* handle NaN specially, nor does
+ * it flush denormal inputs to zero.
+ */
+ return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
+}
+
+INLINE float64 float64_chs(float64 a)
+{
+ /* Note that chs does *not* handle NaN specially, nor does
+ * it flush denormal inputs to zero.
+ */
+ return make_float64(float64_val(a) ^ 0x8000000000000000LL);
+}
+
+INLINE int float64_is_infinity(float64 a)
+{
+ return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
+}
+
+INLINE int float64_is_neg(float64 a)
+{
+ return float64_val(a) >> 63;
+}
+
+INLINE int float64_is_zero(float64 a)
+{
+ return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
+}
+
+INLINE int float64_is_any_nan(float64 a)
+{
+ return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
+}
+
+INLINE int float64_is_zero_or_denormal(float64 a)
+{
+ return (float64_val(a) & 0x7ff0000000000000LL) == 0;
+}
+
+INLINE float64 float64_set_sign(float64 a, int sign)
+{
+ return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
+ | ((int64_t)sign << 63));
+}
+
+#define float64_zero make_float64(0)
+#define float64_one make_float64(0x3ff0000000000000LL)
+#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
+#define float64_pi make_float64(0x400921fb54442d18LL)
+#define float64_half make_float64(0x3fe0000000000000LL)
+#define float64_infinity make_float64(0x7ff0000000000000LL)
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated double-precision NaN.
+*----------------------------------------------------------------------------*/
+extern const float64 float64_default_nan;
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int32 floatx80_to_int32( floatx80 STATUS_PARAM );
+int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
+int64 floatx80_to_int64( floatx80 STATUS_PARAM );
+int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
+float32 floatx80_to_float32( floatx80 STATUS_PARAM );
+float64 floatx80_to_float64( floatx80 STATUS_PARAM );
+float128 floatx80_to_float128( floatx80 STATUS_PARAM );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision operations.
+*----------------------------------------------------------------------------*/
+floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
+floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
+floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
+floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
+floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
+floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
+floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
+int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
+int floatx80_le( floatx80, floatx80 STATUS_PARAM );
+int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
+int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
+int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
+int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
+int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
+int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
+int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
+int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
+int floatx80_is_quiet_nan( floatx80 );
+int floatx80_is_signaling_nan( floatx80 );
+floatx80 floatx80_maybe_silence_nan( floatx80 );
+floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
+
+INLINE floatx80 floatx80_abs(floatx80 a)
+{
+ a.high &= 0x7fff;
+ return a;
+}
+
+INLINE floatx80 floatx80_chs(floatx80 a)
+{
+ a.high ^= 0x8000;
+ return a;
+}
+
+INLINE int floatx80_is_infinity(floatx80 a)
+{
+ return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
+}
+
+INLINE int floatx80_is_neg(floatx80 a)
+{
+ return a.high >> 15;
+}
+
+INLINE int floatx80_is_zero(floatx80 a)
+{
+ return (a.high & 0x7fff) == 0 && a.low == 0;
+}
+
+INLINE int floatx80_is_zero_or_denormal(floatx80 a)
+{
+ return (a.high & 0x7fff) == 0;
+}
+
+INLINE int floatx80_is_any_nan(floatx80 a)
+{
+ return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
+}
+
+#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
+#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
+#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
+#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
+#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
+#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated extended double-precision NaN.
+*----------------------------------------------------------------------------*/
+extern const floatx80 floatx80_default_nan;
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE quadruple-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int32 float128_to_int32( float128 STATUS_PARAM );
+int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
+int64 float128_to_int64( float128 STATUS_PARAM );
+int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
+float32 float128_to_float32( float128 STATUS_PARAM );
+float64 float128_to_float64( float128 STATUS_PARAM );
+floatx80 float128_to_floatx80( float128 STATUS_PARAM );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE quadruple-precision operations.
+*----------------------------------------------------------------------------*/
+float128 float128_round_to_int( float128 STATUS_PARAM );
+float128 float128_add( float128, float128 STATUS_PARAM );
+float128 float128_sub( float128, float128 STATUS_PARAM );
+float128 float128_mul( float128, float128 STATUS_PARAM );
+float128 float128_div( float128, float128 STATUS_PARAM );
+float128 float128_rem( float128, float128 STATUS_PARAM );
+float128 float128_sqrt( float128 STATUS_PARAM );
+int float128_eq( float128, float128 STATUS_PARAM );
+int float128_le( float128, float128 STATUS_PARAM );
+int float128_lt( float128, float128 STATUS_PARAM );
+int float128_unordered( float128, float128 STATUS_PARAM );
+int float128_eq_quiet( float128, float128 STATUS_PARAM );
+int float128_le_quiet( float128, float128 STATUS_PARAM );
+int float128_lt_quiet( float128, float128 STATUS_PARAM );
+int float128_unordered_quiet( float128, float128 STATUS_PARAM );
+int float128_compare( float128, float128 STATUS_PARAM );
+int float128_compare_quiet( float128, float128 STATUS_PARAM );
+int float128_is_quiet_nan( float128 );
+int float128_is_signaling_nan( float128 );
+float128 float128_maybe_silence_nan( float128 );
+float128 float128_scalbn( float128, int STATUS_PARAM );
+
+INLINE float128 float128_abs(float128 a)
+{
+ a.high &= 0x7fffffffffffffffLL;
+ return a;
+}
+
+INLINE float128 float128_chs(float128 a)
+{
+ a.high ^= 0x8000000000000000LL;
+ return a;
+}
+
+INLINE int float128_is_infinity(float128 a)
+{
+ return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
+}
+
+INLINE int float128_is_neg(float128 a)
+{
+ return a.high >> 63;
+}
+
+INLINE int float128_is_zero(float128 a)
+{
+ return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
+}
+
+INLINE int float128_is_zero_or_denormal(float128 a)
+{
+ return (a.high & 0x7fff000000000000LL) == 0;
+}
+
+INLINE int float128_is_any_nan(float128 a)
+{
+ return ((a.high >> 48) & 0x7fff) == 0x7fff &&
+ ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
+}
+
+#define float128_zero make_float128(0, 0)
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated quadruple-precision NaN.
+*----------------------------------------------------------------------------*/
+extern const float128 float128_default_nan;
+
+#endif /* !SOFTFLOAT_H */
diff --git a/contrib/qemu/include/glib-compat.h b/contrib/qemu/include/glib-compat.h
new file mode 100644
index 00000000000..8aa77afd626
--- /dev/null
+++ b/contrib/qemu/include/glib-compat.h
@@ -0,0 +1,27 @@
+/*
+ * GLIB Compatibility Functions
+ *
+ * Copyright IBM, Corp. 2013
+ *
+ * Authors:
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+#ifndef QEMU_GLIB_COMPAT_H
+#define QEMU_GLIB_COMPAT_H
+
+#include <glib.h>
+
+#if !GLIB_CHECK_VERSION(2, 14, 0)
+static inline guint g_timeout_add_seconds(guint interval, GSourceFunc function,
+ gpointer data)
+{
+ return g_timeout_add(interval * 1000, function, data);
+}
+#endif
+
+#endif
diff --git a/contrib/qemu/include/migration/migration.h b/contrib/qemu/include/migration/migration.h
new file mode 100644
index 00000000000..bc9fde0b2ab
--- /dev/null
+++ b/contrib/qemu/include/migration/migration.h
@@ -0,0 +1,157 @@
+/*
+ * QEMU live migration
+ *
+ * Copyright IBM, Corp. 2008
+ *
+ * Authors:
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#ifndef QEMU_MIGRATION_H
+#define QEMU_MIGRATION_H
+
+#include "qapi/qmp/qdict.h"
+#include "qemu-common.h"
+#include "qemu/thread.h"
+#include "qemu/notify.h"
+#include "qapi/error.h"
+#include "migration/vmstate.h"
+#include "qapi-types.h"
+#include "exec/cpu-common.h"
+
+struct MigrationParams {
+ bool blk;
+ bool shared;
+};
+
+typedef struct MigrationState MigrationState;
+
+struct MigrationState
+{
+ int64_t bandwidth_limit;
+ size_t bytes_xfer;
+ size_t xfer_limit;
+ QemuThread thread;
+ QEMUBH *cleanup_bh;
+ QEMUFile *file;
+
+ int state;
+ MigrationParams params;
+ double mbps;
+ int64_t total_time;
+ int64_t downtime;
+ int64_t expected_downtime;
+ int64_t dirty_pages_rate;
+ int64_t dirty_bytes_rate;
+ bool enabled_capabilities[MIGRATION_CAPABILITY_MAX];
+ int64_t xbzrle_cache_size;
+};
+
+void process_incoming_migration(QEMUFile *f);
+
+void qemu_start_incoming_migration(const char *uri, Error **errp);
+
+uint64_t migrate_max_downtime(void);
+
+void do_info_migrate_print(Monitor *mon, const QObject *data);
+
+void do_info_migrate(Monitor *mon, QObject **ret_data);
+
+void exec_start_incoming_migration(const char *host_port, Error **errp);
+
+void exec_start_outgoing_migration(MigrationState *s, const char *host_port, Error **errp);
+
+void tcp_start_incoming_migration(const char *host_port, Error **errp);
+
+void tcp_start_outgoing_migration(MigrationState *s, const char *host_port, Error **errp);
+
+void unix_start_incoming_migration(const char *path, Error **errp);
+
+void unix_start_outgoing_migration(MigrationState *s, const char *path, Error **errp);
+
+void fd_start_incoming_migration(const char *path, Error **errp);
+
+void fd_start_outgoing_migration(MigrationState *s, const char *fdname, Error **errp);
+
+void migrate_fd_error(MigrationState *s);
+
+void migrate_fd_connect(MigrationState *s);
+
+int migrate_fd_close(MigrationState *s);
+
+void add_migration_state_change_notifier(Notifier *notify);
+void remove_migration_state_change_notifier(Notifier *notify);
+bool migration_is_active(MigrationState *);
+bool migration_has_finished(MigrationState *);
+bool migration_has_failed(MigrationState *);
+MigrationState *migrate_get_current(void);
+
+uint64_t ram_bytes_remaining(void);
+uint64_t ram_bytes_transferred(void);
+uint64_t ram_bytes_total(void);
+
+void acct_update_position(QEMUFile *f, size_t size, bool zero);
+
+extern SaveVMHandlers savevm_ram_handlers;
+
+uint64_t dup_mig_bytes_transferred(void);
+uint64_t dup_mig_pages_transferred(void);
+uint64_t skipped_mig_bytes_transferred(void);
+uint64_t skipped_mig_pages_transferred(void);
+uint64_t norm_mig_bytes_transferred(void);
+uint64_t norm_mig_pages_transferred(void);
+uint64_t xbzrle_mig_bytes_transferred(void);
+uint64_t xbzrle_mig_pages_transferred(void);
+uint64_t xbzrle_mig_pages_overflow(void);
+uint64_t xbzrle_mig_pages_cache_miss(void);
+
+/**
+ * @migrate_add_blocker - prevent migration from proceeding
+ *
+ * @reason - an error to be returned whenever migration is attempted
+ */
+void migrate_add_blocker(Error *reason);
+
+/**
+ * @migrate_del_blocker - remove a blocking error from migration
+ *
+ * @reason - the error blocking migration
+ */
+void migrate_del_blocker(Error *reason);
+
+bool migrate_rdma_pin_all(void);
+
+bool migrate_auto_converge(void);
+
+int xbzrle_encode_buffer(uint8_t *old_buf, uint8_t *new_buf, int slen,
+ uint8_t *dst, int dlen);
+int xbzrle_decode_buffer(uint8_t *src, int slen, uint8_t *dst, int dlen);
+
+int migrate_use_xbzrle(void);
+int64_t migrate_xbzrle_cache_size(void);
+
+int64_t xbzrle_cache_resize(int64_t new_size);
+
+void ram_control_before_iterate(QEMUFile *f, uint64_t flags);
+void ram_control_after_iterate(QEMUFile *f, uint64_t flags);
+void ram_control_load_hook(QEMUFile *f, uint64_t flags);
+
+/* Whenever this is found in the data stream, the flags
+ * will be passed to ram_control_load_hook in the incoming-migration
+ * side. This lets before_ram_iterate/after_ram_iterate add
+ * transport-specific sections to the RAM migration data.
+ */
+#define RAM_SAVE_FLAG_HOOK 0x80
+
+#define RAM_SAVE_CONTROL_NOT_SUPP -1000
+#define RAM_SAVE_CONTROL_DELAYED -2000
+
+size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
+ ram_addr_t offset, size_t size,
+ int *bytes_sent);
+
+#endif
diff --git a/contrib/qemu/include/migration/qemu-file.h b/contrib/qemu/include/migration/qemu-file.h
new file mode 100644
index 00000000000..0f757fbeb63
--- /dev/null
+++ b/contrib/qemu/include/migration/qemu-file.h
@@ -0,0 +1,266 @@
+/*
+ * QEMU System Emulator
+ *
+ * Copyright (c) 2003-2008 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#ifndef QEMU_FILE_H
+#define QEMU_FILE_H 1
+#include "exec/cpu-common.h"
+
+/* This function writes a chunk of data to a file at the given position.
+ * The pos argument can be ignored if the file is only being used for
+ * streaming. The handler should try to write all of the data it can.
+ */
+typedef int (QEMUFilePutBufferFunc)(void *opaque, const uint8_t *buf,
+ int64_t pos, int size);
+
+/* Read a chunk of data from a file at the given position. The pos argument
+ * can be ignored if the file is only be used for streaming. The number of
+ * bytes actually read should be returned.
+ */
+typedef int (QEMUFileGetBufferFunc)(void *opaque, uint8_t *buf,
+ int64_t pos, int size);
+
+/* Close a file
+ *
+ * Return negative error number on error, 0 or positive value on success.
+ *
+ * The meaning of return value on success depends on the specific back-end being
+ * used.
+ */
+typedef int (QEMUFileCloseFunc)(void *opaque);
+
+/* Called to return the OS file descriptor associated to the QEMUFile.
+ */
+typedef int (QEMUFileGetFD)(void *opaque);
+
+/*
+ * This function writes an iovec to file.
+ */
+typedef ssize_t (QEMUFileWritevBufferFunc)(void *opaque, struct iovec *iov,
+ int iovcnt, int64_t pos);
+
+/*
+ * This function provides hooks around different
+ * stages of RAM migration.
+ */
+typedef int (QEMURamHookFunc)(QEMUFile *f, void *opaque, uint64_t flags);
+
+/*
+ * Constants used by ram_control_* hooks
+ */
+#define RAM_CONTROL_SETUP 0
+#define RAM_CONTROL_ROUND 1
+#define RAM_CONTROL_HOOK 2
+#define RAM_CONTROL_FINISH 3
+
+/*
+ * This function allows override of where the RAM page
+ * is saved (such as RDMA, for example.)
+ */
+typedef size_t (QEMURamSaveFunc)(QEMUFile *f, void *opaque,
+ ram_addr_t block_offset,
+ ram_addr_t offset,
+ size_t size,
+ int *bytes_sent);
+
+typedef struct QEMUFileOps {
+ QEMUFilePutBufferFunc *put_buffer;
+ QEMUFileGetBufferFunc *get_buffer;
+ QEMUFileCloseFunc *close;
+ QEMUFileGetFD *get_fd;
+ QEMUFileWritevBufferFunc *writev_buffer;
+ QEMURamHookFunc *before_ram_iterate;
+ QEMURamHookFunc *after_ram_iterate;
+ QEMURamHookFunc *hook_ram_load;
+ QEMURamSaveFunc *save_page;
+} QEMUFileOps;
+
+QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops);
+QEMUFile *qemu_fopen(const char *filename, const char *mode);
+QEMUFile *qemu_fdopen(int fd, const char *mode);
+QEMUFile *qemu_fopen_socket(int fd, const char *mode);
+QEMUFile *qemu_popen_cmd(const char *command, const char *mode);
+int qemu_get_fd(QEMUFile *f);
+int qemu_fclose(QEMUFile *f);
+int64_t qemu_ftell(QEMUFile *f);
+void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size);
+void qemu_put_byte(QEMUFile *f, int v);
+/*
+ * put_buffer without copying the buffer.
+ * The buffer should be available till it is sent asynchronously.
+ */
+void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, int size);
+bool qemu_file_mode_is_not_valid(const char *mode);
+
+static inline void qemu_put_ubyte(QEMUFile *f, unsigned int v)
+{
+ qemu_put_byte(f, (int)v);
+}
+
+#define qemu_put_sbyte qemu_put_byte
+
+void qemu_put_be16(QEMUFile *f, unsigned int v);
+void qemu_put_be32(QEMUFile *f, unsigned int v);
+void qemu_put_be64(QEMUFile *f, uint64_t v);
+int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size);
+int qemu_get_byte(QEMUFile *f);
+void qemu_update_position(QEMUFile *f, size_t size);
+
+static inline unsigned int qemu_get_ubyte(QEMUFile *f)
+{
+ return (unsigned int)qemu_get_byte(f);
+}
+
+#define qemu_get_sbyte qemu_get_byte
+
+unsigned int qemu_get_be16(QEMUFile *f);
+unsigned int qemu_get_be32(QEMUFile *f);
+uint64_t qemu_get_be64(QEMUFile *f);
+
+int qemu_file_rate_limit(QEMUFile *f);
+void qemu_file_reset_rate_limit(QEMUFile *f);
+void qemu_file_set_rate_limit(QEMUFile *f, int64_t new_rate);
+int64_t qemu_file_get_rate_limit(QEMUFile *f);
+int qemu_file_get_error(QEMUFile *f);
+void qemu_fflush(QEMUFile *f);
+
+static inline void qemu_put_be64s(QEMUFile *f, const uint64_t *pv)
+{
+ qemu_put_be64(f, *pv);
+}
+
+static inline void qemu_put_be32s(QEMUFile *f, const uint32_t *pv)
+{
+ qemu_put_be32(f, *pv);
+}
+
+static inline void qemu_put_be16s(QEMUFile *f, const uint16_t *pv)
+{
+ qemu_put_be16(f, *pv);
+}
+
+static inline void qemu_put_8s(QEMUFile *f, const uint8_t *pv)
+{
+ qemu_put_byte(f, *pv);
+}
+
+static inline void qemu_get_be64s(QEMUFile *f, uint64_t *pv)
+{
+ *pv = qemu_get_be64(f);
+}
+
+static inline void qemu_get_be32s(QEMUFile *f, uint32_t *pv)
+{
+ *pv = qemu_get_be32(f);
+}
+
+static inline void qemu_get_be16s(QEMUFile *f, uint16_t *pv)
+{
+ *pv = qemu_get_be16(f);
+}
+
+static inline void qemu_get_8s(QEMUFile *f, uint8_t *pv)
+{
+ *pv = qemu_get_byte(f);
+}
+
+// Signed versions for type safety
+static inline void qemu_put_sbuffer(QEMUFile *f, const int8_t *buf, int size)
+{
+ qemu_put_buffer(f, (const uint8_t *)buf, size);
+}
+
+static inline void qemu_put_sbe16(QEMUFile *f, int v)
+{
+ qemu_put_be16(f, (unsigned int)v);
+}
+
+static inline void qemu_put_sbe32(QEMUFile *f, int v)
+{
+ qemu_put_be32(f, (unsigned int)v);
+}
+
+static inline void qemu_put_sbe64(QEMUFile *f, int64_t v)
+{
+ qemu_put_be64(f, (uint64_t)v);
+}
+
+static inline size_t qemu_get_sbuffer(QEMUFile *f, int8_t *buf, int size)
+{
+ return qemu_get_buffer(f, (uint8_t *)buf, size);
+}
+
+static inline int qemu_get_sbe16(QEMUFile *f)
+{
+ return (int)qemu_get_be16(f);
+}
+
+static inline int qemu_get_sbe32(QEMUFile *f)
+{
+ return (int)qemu_get_be32(f);
+}
+
+static inline int64_t qemu_get_sbe64(QEMUFile *f)
+{
+ return (int64_t)qemu_get_be64(f);
+}
+
+static inline void qemu_put_s8s(QEMUFile *f, const int8_t *pv)
+{
+ qemu_put_8s(f, (const uint8_t *)pv);
+}
+
+static inline void qemu_put_sbe16s(QEMUFile *f, const int16_t *pv)
+{
+ qemu_put_be16s(f, (const uint16_t *)pv);
+}
+
+static inline void qemu_put_sbe32s(QEMUFile *f, const int32_t *pv)
+{
+ qemu_put_be32s(f, (const uint32_t *)pv);
+}
+
+static inline void qemu_put_sbe64s(QEMUFile *f, const int64_t *pv)
+{
+ qemu_put_be64s(f, (const uint64_t *)pv);
+}
+
+static inline void qemu_get_s8s(QEMUFile *f, int8_t *pv)
+{
+ qemu_get_8s(f, (uint8_t *)pv);
+}
+
+static inline void qemu_get_sbe16s(QEMUFile *f, int16_t *pv)
+{
+ qemu_get_be16s(f, (uint16_t *)pv);
+}
+
+static inline void qemu_get_sbe32s(QEMUFile *f, int32_t *pv)
+{
+ qemu_get_be32s(f, (uint32_t *)pv);
+}
+
+static inline void qemu_get_sbe64s(QEMUFile *f, int64_t *pv)
+{
+ qemu_get_be64s(f, (uint64_t *)pv);
+}
+#endif
diff --git a/contrib/qemu/include/migration/vmstate.h b/contrib/qemu/include/migration/vmstate.h
new file mode 100644
index 00000000000..1c31b5d6fb5
--- /dev/null
+++ b/contrib/qemu/include/migration/vmstate.h
@@ -0,0 +1,740 @@
+/*
+ * QEMU migration/snapshot declarations
+ *
+ * Copyright (c) 2009-2011 Red Hat, Inc.
+ *
+ * Original author: Juan Quintela <quintela@redhat.com>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#ifndef QEMU_VMSTATE_H
+#define QEMU_VMSTATE_H 1
+
+#ifndef CONFIG_USER_ONLY
+#include <migration/qemu-file.h>
+#endif
+
+typedef void SaveStateHandler(QEMUFile *f, void *opaque);
+typedef int LoadStateHandler(QEMUFile *f, void *opaque, int version_id);
+
+typedef struct SaveVMHandlers {
+ /* This runs inside the iothread lock. */
+ void (*set_params)(const MigrationParams *params, void * opaque);
+ SaveStateHandler *save_state;
+
+ void (*cancel)(void *opaque);
+ int (*save_live_complete)(QEMUFile *f, void *opaque);
+
+ /* This runs both outside and inside the iothread lock. */
+ bool (*is_active)(void *opaque);
+
+ /* This runs outside the iothread lock in the migration case, and
+ * within the lock in the savevm case. The callback had better only
+ * use data that is local to the migration thread or protected
+ * by other locks.
+ */
+ int (*save_live_iterate)(QEMUFile *f, void *opaque);
+
+ /* This runs outside the iothread lock! */
+ int (*save_live_setup)(QEMUFile *f, void *opaque);
+ uint64_t (*save_live_pending)(QEMUFile *f, void *opaque, uint64_t max_size);
+
+ LoadStateHandler *load_state;
+} SaveVMHandlers;
+
+int register_savevm(DeviceState *dev,
+ const char *idstr,
+ int instance_id,
+ int version_id,
+ SaveStateHandler *save_state,
+ LoadStateHandler *load_state,
+ void *opaque);
+
+int register_savevm_live(DeviceState *dev,
+ const char *idstr,
+ int instance_id,
+ int version_id,
+ SaveVMHandlers *ops,
+ void *opaque);
+
+void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque);
+void register_device_unmigratable(DeviceState *dev, const char *idstr,
+ void *opaque);
+
+
+typedef struct VMStateInfo VMStateInfo;
+typedef struct VMStateDescription VMStateDescription;
+
+struct VMStateInfo {
+ const char *name;
+ int (*get)(QEMUFile *f, void *pv, size_t size);
+ void (*put)(QEMUFile *f, void *pv, size_t size);
+};
+
+enum VMStateFlags {
+ VMS_SINGLE = 0x001,
+ VMS_POINTER = 0x002,
+ VMS_ARRAY = 0x004,
+ VMS_STRUCT = 0x008,
+ VMS_VARRAY_INT32 = 0x010, /* Array with size in int32_t field*/
+ VMS_BUFFER = 0x020, /* static sized buffer */
+ VMS_ARRAY_OF_POINTER = 0x040,
+ VMS_VARRAY_UINT16 = 0x080, /* Array with size in uint16_t field */
+ VMS_VBUFFER = 0x100, /* Buffer with size in int32_t field */
+ VMS_MULTIPLY = 0x200, /* multiply "size" field by field_size */
+ VMS_VARRAY_UINT8 = 0x400, /* Array with size in uint8_t field*/
+ VMS_VARRAY_UINT32 = 0x800, /* Array with size in uint32_t field*/
+};
+
+typedef struct {
+ const char *name;
+ size_t offset;
+ size_t size;
+ size_t start;
+ int num;
+ size_t num_offset;
+ size_t size_offset;
+ const VMStateInfo *info;
+ enum VMStateFlags flags;
+ const VMStateDescription *vmsd;
+ int version_id;
+ bool (*field_exists)(void *opaque, int version_id);
+} VMStateField;
+
+typedef struct VMStateSubsection {
+ const VMStateDescription *vmsd;
+ bool (*needed)(void *opaque);
+} VMStateSubsection;
+
+struct VMStateDescription {
+ const char *name;
+ int unmigratable;
+ int version_id;
+ int minimum_version_id;
+ int minimum_version_id_old;
+ LoadStateHandler *load_state_old;
+ int (*pre_load)(void *opaque);
+ int (*post_load)(void *opaque, int version_id);
+ void (*pre_save)(void *opaque);
+ VMStateField *fields;
+ const VMStateSubsection *subsections;
+};
+
+#ifdef CONFIG_USER_ONLY
+extern const VMStateDescription vmstate_dummy;
+#endif
+
+extern const VMStateInfo vmstate_info_bool;
+
+extern const VMStateInfo vmstate_info_int8;
+extern const VMStateInfo vmstate_info_int16;
+extern const VMStateInfo vmstate_info_int32;
+extern const VMStateInfo vmstate_info_int64;
+
+extern const VMStateInfo vmstate_info_uint8_equal;
+extern const VMStateInfo vmstate_info_uint16_equal;
+extern const VMStateInfo vmstate_info_int32_equal;
+extern const VMStateInfo vmstate_info_uint32_equal;
+extern const VMStateInfo vmstate_info_uint64_equal;
+extern const VMStateInfo vmstate_info_int32_le;
+
+extern const VMStateInfo vmstate_info_uint8;
+extern const VMStateInfo vmstate_info_uint16;
+extern const VMStateInfo vmstate_info_uint32;
+extern const VMStateInfo vmstate_info_uint64;
+
+extern const VMStateInfo vmstate_info_float64;
+
+extern const VMStateInfo vmstate_info_timer;
+extern const VMStateInfo vmstate_info_buffer;
+extern const VMStateInfo vmstate_info_unused_buffer;
+extern const VMStateInfo vmstate_info_bitmap;
+
+#define type_check_2darray(t1,t2,n,m) ((t1(*)[n][m])0 - (t2*)0)
+#define type_check_array(t1,t2,n) ((t1(*)[n])0 - (t2*)0)
+#define type_check_pointer(t1,t2) ((t1**)0 - (t2*)0)
+
+#define vmstate_offset_value(_state, _field, _type) \
+ (offsetof(_state, _field) + \
+ type_check(_type, typeof_field(_state, _field)))
+
+#define vmstate_offset_pointer(_state, _field, _type) \
+ (offsetof(_state, _field) + \
+ type_check_pointer(_type, typeof_field(_state, _field)))
+
+#define vmstate_offset_array(_state, _field, _type, _num) \
+ (offsetof(_state, _field) + \
+ type_check_array(_type, typeof_field(_state, _field), _num))
+
+#define vmstate_offset_2darray(_state, _field, _type, _n1, _n2) \
+ (offsetof(_state, _field) + \
+ type_check_2darray(_type, typeof_field(_state, _field), _n1, _n2))
+
+#define vmstate_offset_sub_array(_state, _field, _type, _start) \
+ (offsetof(_state, _field[_start]))
+
+#define vmstate_offset_buffer(_state, _field) \
+ vmstate_offset_array(_state, _field, uint8_t, \
+ sizeof(typeof_field(_state, _field)))
+
+#define VMSTATE_SINGLE_TEST(_field, _state, _test, _version, _info, _type) { \
+ .name = (stringify(_field)), \
+ .version_id = (_version), \
+ .field_exists = (_test), \
+ .size = sizeof(_type), \
+ .info = &(_info), \
+ .flags = VMS_SINGLE, \
+ .offset = vmstate_offset_value(_state, _field, _type), \
+}
+
+#define VMSTATE_POINTER(_field, _state, _version, _info, _type) { \
+ .name = (stringify(_field)), \
+ .version_id = (_version), \
+ .info = &(_info), \
+ .size = sizeof(_type), \
+ .flags = VMS_SINGLE|VMS_POINTER, \
+ .offset = vmstate_offset_value(_state, _field, _type), \
+}
+
+#define VMSTATE_POINTER_TEST(_field, _state, _test, _info, _type) { \
+ .name = (stringify(_field)), \
+ .info = &(_info), \
+ .field_exists = (_test), \
+ .size = sizeof(_type), \
+ .flags = VMS_SINGLE|VMS_POINTER, \
+ .offset = vmstate_offset_value(_state, _field, _type), \
+}
+
+#define VMSTATE_ARRAY(_field, _state, _num, _version, _info, _type) {\
+ .name = (stringify(_field)), \
+ .version_id = (_version), \
+ .num = (_num), \
+ .info = &(_info), \
+ .size = sizeof(_type), \
+ .flags = VMS_ARRAY, \
+ .offset = vmstate_offset_array(_state, _field, _type, _num), \
+}
+
+#define VMSTATE_2DARRAY(_field, _state, _n1, _n2, _version, _info, _type) { \
+ .name = (stringify(_field)), \
+ .version_id = (_version), \
+ .num = (_n1) * (_n2), \
+ .info = &(_info), \
+ .size = sizeof(_type), \
+ .flags = VMS_ARRAY, \
+ .offset = vmstate_offset_2darray(_state, _field, _type, _n1, _n2), \
+}
+
+#define VMSTATE_ARRAY_TEST(_field, _state, _num, _test, _info, _type) {\
+ .name = (stringify(_field)), \
+ .field_exists = (_test), \
+ .num = (_num), \
+ .info = &(_info), \
+ .size = sizeof(_type), \
+ .flags = VMS_ARRAY, \
+ .offset = vmstate_offset_array(_state, _field, _type, _num),\
+}
+
+#define VMSTATE_SUB_ARRAY(_field, _state, _start, _num, _version, _info, _type) { \
+ .name = (stringify(_field)), \
+ .version_id = (_version), \
+ .num = (_num), \
+ .info = &(_info), \
+ .size = sizeof(_type), \
+ .flags = VMS_ARRAY, \
+ .offset = vmstate_offset_sub_array(_st